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group scatterers in lieu of individual atomic ones 
improves the efficiency by almost an order of magni- 
tude. We are currently testing the method on oligo- 
nucleotide and protein structures. 

We thank our colleagues J. L. Sussman and F.L. 
Hirshfeld for many useful discussions. 
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Abstract 

This paper investigates changes of the bicrystal sym- 
metry caused by rigid-body relaxation. Analytical 
expressions are derived for the determination of the 
symmetry of a bicrystal, or, more generally, of a binary 
composite, corresponding to a particular relative dis- 
placement of its components. Such displacements can 
change the point and/or  space symmetry of the com- 
posite either by compressing symmetry operations or 
by transforming symmorphic symmetry operations to 
their nonsymmorphic counterparts, or vice versa. In 
the latter case the relative displacements have a well 
defined magnitude and direction and it is shown that 
the composite space groups associated with these 
displacements correspond to a new type of subgroups 
of space groups. These subgroups, although having 
the same unit cell as the original space group, are 
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similar to the klassengleiche subgroups in the sense 
that the descent in symmetry has affected the transla- 
tions in the unit cell of the original group. Further- 
more, it is pointed out that the reduction of symmetry 
due to relative displacements is accomplished by a 
multiplicity of crystallographically equivalent ways 
and that their number and interrelation depends on 
the space symmetry of the original composite. 

I. Introduction 

The crystallographic framework of planar grain boun- 
daries was recently discussed by Pond & Bollmann 
(1979). Their considerations, enabling the description 
of the interfacial symmetry, were based on the 
introduction of the bicrystal which is defined as the 
system of the two adjacent crystals containing the 
planar interface. The starting point of the 
methodology of Pond & Bollmann, which was sub- 
sequently extended by Vlachavas (1980) and Pond & 
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Vlachavas (1983), is the following idealized construc- 
tion of a bicrystal. 

We begin by interpenetrating the two lattice com- 
plexes corresponding to the two crystals of the 
bicrystal so that they have a common origin and are 
in complete coincidence. For convenience, one lattice 
complex is designated black and the other white 
(Pond & Bollmann, 1979). The desired relative 
orientation and position of the bicrystal components 
is then obtained by: (i) causing the black lattice com- 
plex to undergo a rotation R while keeping the white 
lattice complex fixed in space, and (ii) translating the 
black complex by t with respect to the white complex. 
The interpenetrating configuration of black and white 
lattice complexes thus obtained is called, following 
Vlachavas (1980), the dichromatic complex. 

Having obtained the dichromatic complex for the 
desired R and t we are now in a position to create 
the bicrystal. We start by introducing a mathematical 
plane into the dichromatic complex in the orientation 
and position of the chosen interface. The bicrystal is 
then obtained by locating atoms at the positions of 
the black lattice complex on one side of the interface 
and at the positions of the white lattice complex on 
the other side. 

This procedure for manufacturing a bicrystal can 
be successfully applied to express the bicrystal sym- 
metry in terms of the space group and the relative 
orientation and position of the crystals adjoining the 
interface. The relationship between the bicrystal sym- 
metry and the space group of the adjacent crystals 
was investigated by Pond & Vlachavas (1983); the 
variation of bicrystal symmetry with changes in the 
relative orientation of the component crystals can be 
obtained by the treatment described by Vlachavas 
(1984). Thus, one of the questions that remains to be 
answered is: 'how does the symmetry of the dichro- 
matic complex or the bicrystal vary when the black 
lattice complex undergoes a shift with respect to the 
white lattice complex?'. These symmetry changes are 
the objective of the analytical treatment developed 
in this paper. The proposed approach can be applied 
equally well to study the symmetry variation with 
displacement of either the dichromatic complexes or 
bicrystals. Consequently, in our considerations we 
will refer to the more general case of a dichromatic 
composite characterized by a specific combination of 
two identical components. These components may, 
in general, have zero-, one-, two- or three-dimensional 
periodicity. 

The analytical treatment proposed in this paper 
also enables the determination of the interrelationship 
of certain rigid-body relaxed interfaces. Computer 
simulation (see e.g. Smith, Vitek & Pond, 1977; Pond, 
Smith & Vitek, 1979) and transmission electron micro- 
scopy observations (Pond & Vitek, 1977; Pond, 1979) 
indicate that the energetically favourable structures 
of coincidence-site-lattice grain boundaries are 

characterized by specific relative translations. Such 
rigid-body displacements lead, as pointed out by 
Pond (1977), to a multiplicity of possible configur- 
ations that can exist for a given coincidence-site- 
lattice grain boundary. The number and disposition 
of rigid-body relaxed interfaces are obtained by 
analysing the bicrystal symmetry variation with dis- 
placement according to the treatment developed in 
this paper. 

As mentioned above, one of the components of the 
dichromatic composite is regarded white and the 
other black. Thus, the point and/or  space group of 
the dichromatic composite is expressed by using two- 
coloured symmetry formulation (see e.g. Shubnikov 
& Koptsik, 1974). In this way, symmetry relationships 
between the two components are described by colour- 
reversing symmetry operations, whereas the symmetry 
between parts of the same component corresponds 
to ordinary symmetry operations. The symbols of 
symmetry operations, elements and groups used in 
this paper are consistent with the notation outlined 
by Vlachavas (1984). 

The parallel displacement of, say, the black com- 
ponent with respect to the white one changes the 
point and/or  space symmetry of the dichromatic com- 
posite. The variation of the point symmetry with 
relative displacement is examined in part I of the 
paper while in part II we consider the more general 
case of periodic composites. Though this method 
involves a slight expansion and some repetition of 
the work, for reasons of clarity it appears preferable 
to a direct consideration of the more general problem 
and a subsequent deduction of the simpler one as a 
particular case. 

2. Part h Point-symmetry variation 

For studying the symmetry variation of a dichromatic 
composite its white component is considered fixed in 
space and is used as the reference component. Any 
relative displacement between the two components 
is introduced by the appropriate translation of the 
black component. This translation is represented by 
the vector which connects the origin of the orthogonal 
coordinate system of the white component to the 
origin of the black coordinate system. This vector 
expressed relative to the white coordinate system is 
t = cd +/3j + yk, where i, j, k are the unit vectors along 
the x, y and z axes, respectively, and will be denoted 
by t=(a , /3 ,  y). 

If the black component is displaced away from its 
original position, the geometrical relationship and, 
hence, the symmetry between the two components 
changes. As an example, let the dichromatic com- 
posite in Fig. l(a) be obtained by superposing two 
rectangles which are rotated relative to one another 
by 90 °. The symmetry of the composite (on a one-sided 
p!ane) is 4'mm'.  Next we displace the black rectangle 
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by t = (x, 0, 0), i.e. by an arbitrary amount along the 
x axis, and we see (Fig. 1 b) that the symmetry of the 
composite is reduced to m. 

2.1. Subgroup relations in the point-symmetry 
variation 

It is seen by comparing the composites in Figs. l(a) 
and (b) that the relative displacement destroys some 
of the symmetry operations of the original composite 
while it conserves others and yields, consequently, a 
composite with lower symmetry. This is so, however, 
only when the original composite is holosymmetric, 
i.e. when the original composite exhibits the highest 
possible symmetry which can be created by the super- 
position of two given components in a given mis- 
orientation relationship.* 

For finite components and for a particular mis- 
orientation the unique translational position of the 
two components leading to the holosymmetric com- 
posite corresponds to t = 0 .  This is so because, as 
pointed out by Vlachavas (1980), the dichromatic 
composite has the common symmetry of the 
individual components augmented by the operations 

* The rotation of  the black component relative to the white one 
is called the misorientation relationship of the two components 
(or misorientation for short). 
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Fig. 1. The variation of the point symmetry with displacement. 

of rotation and translation which describe their 
mutual position. When the components have common 
origin they possess the maximum number of common 
symmetry elements for the given misorientation and, 
consequently, the composite exhibits the highest poss- 
ible symmetry. 

In what follows the composite with t = 0 is taken 
to be always holosymmetric, unless specifically stated 
to be otherwise. In this case the point symmetry of 
the composite after any displacement is a subgroup 
of the original point group. First of all, it is a group 
by virtue of the restrictions placed upon the conserva- 
tion of its elements. No product of elements in the 
set can be unrelated to the particular geometrical 
relationship of the two components, and all elements 
of the initial composite related to this relationship 
are included in the set. Secondly, it is a subgroup 
because in displacing the black component symmetry 
elements are removed but not added as long as the 
initial composite is holosymmetric. 

Having established the relationship between the 
composite point groups before and after displacement 
an analytical approach for investigating the point 
symmetry variation can be derived. For this the 
colour-reversing and ordinary symmetry operations 
are considered separately. 

2.2. Conservation of colour-reversing symmetry 
operations 

The colour-reversing symmetry operations of the 
dichromatic composite arise by geometrical relation- 
ships between the white and black components. Thus, 
any displacement t which does not alter a particular 
relationship conserves the respective operation, 
which, however, is shifted by t/2. Let us consider the 
following example. A dichromatic composite is 
obtained by superposing two rectangles in such a way 
that their long sides are coincident (Fig. 2a). The 
symmetry of the composite, which is not holosym- 
metric, is 2'mm'. Next, we displace the black rectangle 
by t = (x, 0, 0) and we see (Fig. 2b) that the mirror 
plane m' has been shifted by (x/2, 0, 0) relative to its 
original position. 

When the black component is displaced by t the 
origin of the coordinate system has to be displaced 
by t/2 in order to retain the form of the symmetry- 
operation matrix representations (this coordinate sys- 
tem is called the 'displaced coordinate system'). 
Alternatively stated, it can be considered that the 
black component is displaced by t/2 and at the same 
time the white component by - t / 2 .  In this case the 
conserved symmetry elements remain in their initial 

The original composite in (a) is obtained by the superposition positions and, hence, they are expressed relative to 
of a white and a black rectangle which are relatively rotated by ' the original coordinate system. 
90°; its symmetry is 4'ram'. When the black component is dis- 
placed by t = (x, 0, 0) the composite symmetry is reduced to m(b). Let Sc be a colour-reversing symmetry operation 
The coordinate system is shown in (a); the z axis is out of the which is conserved by the displacement t. Since Sc is 
plane of the paper, present in the original composite there is at least a 



D. S. VLACHAVAS 203 

pair of points belonging to the white and black com- 
ponents-their positions in the original composite are 
denoted by r~ and rb, respectively - for which 

Scrw = rb. 

If the white and black components are displaced 
by - t / 2  and t/2, the positions of the above points 
relative to the original coordinate system become 
r ~ - t / 2  and rb+t /2 ,  respectively. The symmetry 
relationship of the two points is now expressed by 

Sc(rw - t / 2 )  = rb +t/2.  

Consequently, a colour-reversing symmetry operation 
in the dichromatic composite is conserved at its 
original position only for displacements which satisfy 
the relation 

Sc(-t/2)=t/2, (1) 

where the displacement t/2 is expressed relative to 
the coordinate system of the original composite (i.e. 
the composite before displacement). Equivalently, (1) 
gives the displacement t of the black component 
which conserves the colour-reversing operation S~. 
However, in this case Sc is shifted by t/2 from its 
original position. 

m 
my 

2.3. Conservation of ordinary symmetry operations 

Ordinary symmetry operations in the dichromatic 
composite arise by the coincidence of identical oper- 
ations* of the two components (see Vlachavas, 1984) 
and, consequently, a displacement t conserves an 
ordinary symmetry operation only if it leaves them 
in coincidence. Referring to Fig. 2, for an example, 
we note that the mirror my occurs in the dichromatic 
composite because of the coincidence of the mirror 
planes of the individual components. Also, we note 
that the displacement t = (x, 0, 0) is.parallel to my and, 
hence, it conserves this mirror plane at its original 
position. 

Let So be an ordinary symmetry operation which 
is conserved when the two components are displaced 
relative to each other by t. In the original composite 
there is at least a pair of white points, r~ and r ' ,  as 
well as a pair of black points, rb and r~,, for which 

Sor~ = rw and Sor~ = rb. 

After displacement t the positions of the points in 
the white component become r w - t / 2  and r ' - t / 2  
and those in the black component rb + t /2  and r~, +t /2,  
respectively. Therefore, the symmetry relationships 
of the two points are given by 

S o ( r ' - t / 2 ) = r w - t / 2  and So(r'b+t/2)=rb +t/2.  

Consequently, an ordinary symmetry operation is 
conserved by a displacement only if 

So(t/2)=t/2, (2) 

where, again, the displacement t/2 is expressed rela- 
tive to the coordinate system of the original com- 
posite. 

(a) 

I 

my 

J Irn× 

(b) 
Fig. 2. The shift of symmetry elements with displacement. The 

original composite is shown in (a) and has symmetry 2'm'm. In 
(b) the black rectangle is shifted by t = (x, 0, 0) and the composite 
symmetry is again 2 'm'nt  However, the mirror m" is shifted by 
t /2=(x/2,0, O) from its original position. The z axis of the 
coordinate system is out of the plane of the paper; the x and y 
axes are indicated in (a). 

2.4. Example of point-symmetry variation 

The application of the relations derived in the 
foregoing sections is now demonstrated with refer- 
ence to a particular example. Let both the white and 
black components be non-periodict with symmetry 
4/mmm and let these be superposed so the obtained 
composite has symmetry 4/mm'm'. This black-white 
point group contains the following symmetry oper- 
ations: 

ordinary operations: 
1 1 3 - - I  - - 3  4ool, 4ool, 2~ol, i, 40ol, , 4001, Sool 

colour-reversing operations: 
21' r r r , , 1oo, 2olo, 211o, 2ho, Sloo, So~o, S~lo, S~lo. 

*This implies, of course, that the symmetry operations of both 
the white and black point groups are expressed relative to the same 
coordinate system. 

tThis implies that point symmetry only is taken into account; 
the method is, however, identically applied for studying the point- 
symmetry variation of periodic composites. 
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Table 1. Subgroups of the black-white point group 4/mm'm'  (see Ascher & Janner, 1965) 

All the  s u b g r o u p s  a re  i n c l u d e d  in the  t ab l e ;  f r o m  the  to ta l  35 s u b g r o u p s  on ly  19 are  c r y s t a i l o g r a p h i c a l l y  n o n - e q u i v a l e n t .  

No .  S u b g r o u p  1 

1 4 / m m ' m '  x 
2 42'm'  x 

3 42'm'  x 

4 4 m ' m '  x 

5 42'2' x 
6 4 / m  x 

7 7~ x 
8 4 x 
9 m ' m ' m  x 

10 m ' m ' m  x 

11 m'm2 '  x 
12 m' m2'  x 
13 m'm2 '  x 
14 m'm2 '  x 
15 2 ' /m '  x 
16 2 ' / m '  x 
17 2 ' /m '  x 
18 2 ' / m '  x 
19 2 / m  x 
20 m'm '2  x 
21 m'm'2  x 
22 2'2'2 x 
23 2'2'2 x 
24 T x 

25 m'  x 
26 m'  x 
27 m'  x 
28 m'  x 
29 2' x 
30 2' x 
31 2' x 
32 2' x 
33 m x 
34 2 x 
35 I × 

4~ot 4o30,  2olo, 21oo 2ol]o 21'~o 2{'1o 
X X X X X X X 

X X X 

X X X 

X X X 

X X X X X X X 

X X X 

X 

X X X 

X X X 

X X X 

X 

X X 

i 4~o, 43o, Soo, Sloo s~,,o s',,o 
X X X X X X X 

X X X 

X X X X 

X X X 

X X X X 

X X 

X X X X 

X X 

X X 

X X 

X 

X X X 

X X 

X X 

X X 

X X 

X X X 

X X 

x x 

x x 

S~o 

x 

x 

The z axis of the orthogonal coordinate system used 
for expressing the symmetry operations and the dis- 
placements is along the fourfold axis. The x and y 
axes, on the other hand, coincide with two mutually 
perpendicular twofold axes of the point group. 

The symmetry 4/mm'm' corresponds to the 
holosymmetric composite created by the given com- 
ponents in the given misorientation. Consequently, 
the symmetry of the composites after displacement 
will correspond to one of the subgroups of 4 /mm'm '  
given in Table 1. 

The next stage in the procedure is to determine the 
displacements for which each of the symmetry oper- 
ations of 4/mm'm'  is invariant. Colour-reversing 
operations are conserved by the displacements 
obtained as solutions of (1) (Table 2). On the other 
hand, the displacements conserving ordinary oper- 
ations are, according to (2), those in Table 3. In 
applying the results of Tables 2 and 3 it must be borne 
in mind that they correspond to symmetry operations. 
The displacements conserving a particular symmetry 
element are those which leave all the symmetry oper- 
ations associated to this element invariant. The. 
ordinary fourfold axis, for example, involves the pres- 
ence of the four symmetry operations 1, 4~ol, 2ooi,I 
4%1. All these operations are conserved for displace- 

ments parallel to the z axis and, hence, the fourfold 
ordinary axis is conserved by t = (0, 0, z). 

Attention is now focused on displacements leading 
to a composite with symmetry described by any one 
of the subgroups of the point group 4/mrn'm'. For 
this, each subgroup given in Table 1 is considered 
starting with those of higher symmetry. For each 
subgroup a displacement conserving all the group 
elements can be established.* Consider the subgroup 
42'2' = {1, i i 3 i' i' ' i' 2olo, io, 2T~o}. 4ool, 2ool, 4ool, 21oo, 21 The 
fourfold axis is conserved by a displacement (0, 0, z) 
whereas 1, i, 1, 1, the axes 21oo, 2olo, 211o, 2flo are conserved 
by the displacements (O, y, z), (x, O, z), (~, x, z), 
(x, x, z), respectively. Therefore, the only displace- 
ment conserving all the elements of 42'2' is of the 
form t = (0, 0, z). Similar considerations give the dis- 
placements which conserve each of the remaining 
subgroups (Table 4). Since the point group of the 
composite for t # 0 is restricted to be a subgroup of 
the point group 4 /mm'm '  and since all the subgroups 
were considered it is clear that Table 4 covers all the 
possible composites obtained from the original com- 
posite. 

* It  s h o u l d  be  r e m e m b e r e d  tha t  ce r ta in  s u b g r o u p s  a re  c o n s e r v e d  
on ly  fo r  the  d i s p l a c e m e n t  t = 0 (see be low) .  
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Table 2. Solutions o f  the equation Sc(- t /2 ) - - - t /2  for  
the colour-reversing symmetry operations o f  the b lack-  

white point group 4/  m m ' m '  

Symmetry element Sc 

Symbol 

2'.00 

I' 2i~o 

S~oo 

S~lo 

S~lo 

t 
STI0 

Matrix 
representation (ioo / 

1 - 1  0 

0 0 -I ( 00 00) 
1 o 

o o - 

o_, i/ -! 0 
0 0 - 

, , ° i /  o 1 
o o ,o 
0 -I 
0 0 

o_, i/ -1 0 
0 0 

o ,  i/ I o 

o o 

Displacements conserving 
the symmetry element Sc 

(expressed relative to 
original coordinate system) 

(o, y, z) 

(x, o, z) 

(~, x, z) 

(x, x, z) 

(x, o, o) 

(o, y, o) 

(x, x, o) 

(~, x, o) 

Table 3. Solutions o f  the equation So(t/2) = t /2  for  the 
ordinary symmetry operations o f  the black-whi te  point 

group 4/  mm'  m' 

Symmetry element So 

Matrix 
Symbol representation 

1 1 

o 

:) 0 -1 0 
4 ~ 1  1 0 

0 0 

4o3ol - 0 
0 

2~ol -1 
0 

i -1 
0 - 

~ ,  - o 

o - 

~ ,  o 
0 - 

s~l 1 
0 - 

Displacements conserving 
the symmetry element So 

(expressed relative to 
ordinary coordinate system) 

(x, y, z) 

(0, 0, z) 

(0, 0, z) 

(0, 0, z) 

(0, 0, 0) 

(0, 0, 0) 

(0, 0, 0) 

(x, y, 0) 

When  the d isplacements  conserving the elements 
of  a subgroup are de te rmined  the fol lowing must  be 
kept in mind:  

(a) since the (ordinary) identi ty operat ion is con- 
served by any d isp lacement  there is no need to 
account  for this operat ion;  

(b) certain subgroups are not invariant  by displace- 
ments t # 0; the subgroup 3,2'm', for example ,  is con- 
served by the d isp lacement  t = (0, 0, 0) only;  and 

(c) certain subgroups are formed by displacements  
which at the same t ime conserve another  subgroup 
of  h igher  symmetry.  

The latter is a consequence of  the conservat ion of  
various symmetry  elements  by the same displacement .  
For example ,  both subgroups 42'2' and 4 are formed 
by a d i sp lacement  of  the form (0, 0, z). This happens  
when the two groups contain common  elements,  or, 
in other words, when  the two groups are related by 
a subgroup / supe rg roup  relat ionship.  In such cases, 
however,  the symmetry  of  the d ichromat ic  composi te  
is descr ibed by the highest-order subgroup (highest 
symmetry).  This explains  why the subgroup list must  
be considered in a sequence of decreasing group 
order. 

2.5. Equivalent composites 

It can be seen from Table 4 that composi tes  with 
symmetry  descr ibed by certain subgroups  can be 
created by more than  one crysta l lographical ly  
equivalent  displacement .* This occurs whenever  a 
subgroup adopts more  than  one crysta l lographical ly  
equivalent  orientat ion in the point  group of  the 
original  composite.  The subgroup m'm2' ,  for 
instance,  adopts four different orientat ions in 
4 / m m ' m '  differing over an angle of  45 ° about  the 
fourfold  axis;  two of  these orientations are not crys- 
ta l lographical ly  equivalent .  Only  the first or ientat ion 
is considered here, since the second case can be 
treated in exactly the same way. The two crystal- 
lographical ly  equivalent  subgroups m'm2'  (sub- 
groups 11 and  12 in Table  4) are related by a symmetry  

4ool, of  the original composite.  The operat ion,  say 

* It is possible that composites with identical symmetry can be 
created by crystallographically non-equivalent displacements. 
These cases, however, must be treated separately; this is a situation 
where the need to distinguish between crystallographically non- 
equivalent subgroups arises. 
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Table 4. Point-symmetry variation of  a composite with 
symmetry 4 /mm'm'  

Displacement expressed relative to Point group 
original coordinate system No.* Symbol 

(0, 0, 0) I 4/mm'm' 
(0, 0, z) 5 42'2' 
(0, y, 0) 11 re'm2' 
(x, 0, 0) 12 re'm2' 
(st, x, O) 13 m'm2' 
(x, x, 0) 14 m'm2' 
(0, y, z) 29 2' 
(x, 0, z) 30 2' 
(~, x, z) 31 2' 
(x, x, z) 32 2' 
(x, y, 0) 33 m 
(x, y, z) 35 l 

*See Table 1. 

same operation relates the displacements t~ = (x, 0, 0) 
and tE=(0,  y, 0) yielding the corresponding com- 
posites. 

It can be stated that, in general, whenever an 
original composite contains point symmetry higher 
than 1 there exists a set of dichromatic composites, 
obtained from the original composite by displace- 
ments of the black component,  which are related by 
the symmetry of the composite with t = 0. The com- 
posites of such sets will be called 'equivalent com- 
posites'. 

A crystallographic point group G can be decom- 
posed into left cosets with respect to a subgroup H, 

G = H +g~H +gEH + . . .  +gn_~H, 

where n is the index of H in G and gj (1 -< i_< n - l) 
is an operator of G which does not belong to H nor 
to any of the previous cosets. Each coset will corres- 
pond to a composite with t # 0. The equivalent com- 
posites, having the same or crystallographically 
equivalent point symmetry, are related by the sym- 
metry operations of the set {1, g~, g2 , . . - ,  g,-~}. Thus, 
for the example mentioned above we have G =  
4 /mm'm '  and H = m'm2' and the decomposition is 

{4/mm'm'} = {m'm2'} + 4~ol{m'm2'} + 2~ol{m'm2'} 

+43ool{m'm2 '} 

= {4}-{m'm2'}. 

Consequently, the equivalent composites with sym- 
metry m'm2' are obtained by the displacements 
(x, 0, 0), (0, x, 0), (:~, 0, 0), (0, £, 0) which are also 
related by the symmetry operations of the group 4 = 
{1,  ' 400,, 2~o,, 43Ol}. 

It must be noticed that the set of symmetry oper- 
ations relating equivalent composites is generally not 
unique; in the above case we have, for instance, 

O = H + 4o~o, H + 2~o, H + 43ol H 

- H +S~loH +S~loH +2olol H. 

A crystallographic point group may be decomposed 

into non-intersecting (except for the identity operator) 
subgroups, called direct factors, whose product* is 
the original group (Kurosh, 1955). Let the initial 
group G be decomposed into two factors, one of the 
subgroups is chosen to be the symmetry group H of 
the equivalent composites with t # 0 and the other is 
designated Gg. This decomposition is not unique, 
however, so that, for a given G and H, Gg may be 
chosen in a number of ways Gg,~. Each such Gg, i 
represents a set of symmetry operations, all indepen- 
dent of H, which relate equivalent composites. For 
the above considered case we have: {4 /mm'm'}= 
{4}{m'm2'} = {m'm'2} {m'm2'} = 14}{m'm2'} = . . . =  
{2'/m'}{m'm2'}={22'2'}{m'm2'}, but any of these 
decompositions gives the same set of displacements 
creating the equivalent composites with symmetry 
m' m2'. 

2.6. Conservation of  point symmetry elements 

In this section we seek to determine the conditions 
for the conservation of symmetry elements. These 
conditions can be established if we recall that every 
symmetry element is associated with one or more 
symmetry operations.t  The only symmetry element 
of order 1 is the identity (onefold ordinary axis) and, 
according to (2), there is no displacement which could 
destroy the symmetrical relationship of a point to 
itself. 

Rule 1: The ordinary identity element is conserved 
by any relative displacement of the black and white 
components. 

Symmetry elements of order greater than l are 
associated with either ordinary operations only or 
equal numbers of ordinary and colour-reversing oper- 
ations. These symmetry elements are conserved by 
the displacements which leave all the correlative oper- 
ations invariant. Consequently, a symmetry element 
of order n ( n >  1) is conserved by displacements 
determined from the solution of the system of 
equations 

Si{(-1)Kt/2}=t/2,  

where Si ( i  = 1, 2 , . . . ,  n) are the matrices representing 
the symmetry operations associated with the sym- 
metry and K = 1 for colour-reversing or K = 2  for 
ordinary symmetry operations. 

The symmetry elements of order 2 are T,2,m,l',l',2' 
and m'. Each of these elements is associated, except 
the identity, with only one ordinary or colour- 
reversing operation and, taking into account rule 1, 
the displacements conserving it are determined by (1) 
or (2) correspondingly. We have the following rules. 

*A product is understood, in this context, as the sum of all 
products of the elements of the subgroups one by one. 

t The number of symmetry operations coupled with a symmetry 
element is called the 'order of the element'. 
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Rule 2: No translation conserves the anti-identity 
operation. 

Rule 3: The ordinary inversion centre is destroyed 
by any displacement whereas the anti-inversion centre 
is always conserved. 

Rule 4: Colour-reversing axes 2' or planes m' are 
conserved by displacements which are perpendicular 
to the rotation axes or symmetry planes. 

Rule 5: An ordinary twofold axis or mirror plane 
is conserved only by displacements parallel to this 
axis or plane of symmetry. 

The displacements conserving_symmetry elements 
of order greater than 2 (i. e. 3,4,6,3,4,6,4',6',3',4',6'; the 
threefold colour-reversing axis is not included since 
3 '=31 ' )  are determined by combining (1) and (2) as 
indicated above. For such symmetry elements we have 
the following rules; the first of these rules may be 
regarded as a generalization of rule 5. 

Rule 6: An ordinary n-fold rotation axis (n = 
2, 3, 4, 6) or mirror plane is conserved only by dis- 
placements parallel to this axis or plane of symmetry. 

Rule 7: Colour-reversing 3', 4', 6' rotoinversion 
axes are conserved only by displacements along the 
axis. 

Rule 8: The ordinary rotoinversion axes 3, 4, 6 and 
the colour-reversing rotation axes 4', 6' are destroyed 
by any displacement. 

3. Part II: Variation of the spatial symmetry* 

In this part we investigate how the relative displace- 
ment changes the symmetry of periodic composites. 
The components of such a composite are necessarily 
periodic, and in this part they are considered to have 
three-dimensional translational symmetry. However, 
this attitude by no means restricts the proposed treat- 
ment which can identically be applied for composites 
formed by two components of one- or two- 
dimensional periodicity. 

The presence of translational symmetry in a dichro- 
matic composite has two important consequences. 
First of all, the spatial group of the composite before 
or after displacement may be either symmorphic or 
nonsymmorphic. Thus, some of the symmetry ele- 
ments of the composite may be screw axes or glide- 
reflection planes (see § 3.3). Secondly, unlike the 
point-symmetry variation, there exist displacements 
which conserve the original composite. 

3.1. Displacements conserving a periodic composite 

The displacements which leave the original peri- 
odic composite unchanged may be classified into two 
categories, namely: 

* From hereon we use the terms 'spatial symmetry' and 'spatial 
group' to signify that the translational symmetry present may be 
one, two or three dimensional, and reserve the terms 'space sym- 
metry' and 'space group' for three-dimensional cases. 

(i) displacements due to the periodicity of the com- 
ponents; and 

(ii) displacements due to the periodicity of the 
composite. 

As mentioned above, the components of a periodic 
composite always have translational symmetry. The 
translation group of the Bravais lattice of each com- 
ponent contains, by definition, all the displacement 
vectors for which the component is invariant in space. 
Thus, if the relative displacement of the black (white) 
component is equal to a translation vector of the black 
(white) lattice, then the composite is recreated at its 
original position. Displacements of this category are 
termed 'composite repeat displacements' and they 
join points of the same colour in the dichromatic 
composite. 

The second category of displacements is related to 
periodic composites with a misorientation relation- 
ship which yields a coincidence site lattice (CSL) (see, 
for example, Grimmer, Bollmann & Warrington, 
1974). The latter is a sublattice common to both 
components generated by the set of neutral sites in 
the dichromatic composite. In such cases there are 
antitranslation vectors, i.e. vectors joining white to 
black sites, which reconstruct the composite as a 
whole. If the black component is displaced by any 
antitranslation vector, the original composite is re- 
created but, in general, has its neutral origin located 
at a new position. The shift of the CSL is equal to a 
translation vector of the white component. 

As an illustration of displacements of the second 
category we consider a dichromatic patternt formed 
by rotating a black face-centred cubic lattice by an 
angle 0 = 36.9 ° along [001] with respect to an identical 
white lattice (Fig. 3). This misorientation corresponds 

t A dichromatic pattern is a special composite and is defined by 
Pond & Bollmann (1979) as the composite consisting of two inter- 

m "  m s 

O • 

O O  
• O 

O • 
2" m" 

• O 
o O ~'~1 • 

• 0 

2" 2" 2" 
Fig. 3. Projection along [001] of the CSL dichromatic pattern 

formed by face-centred cubic lattices with misorientation 
[001 ]/36.9 °. The size ofthe symbols represents t he . . .  A B A B A . . .  
stacking along [0011; large and small circles represent sites at 
levels 0 (or 1) and ~ along [001], respectively. Open and filled 
circles indicate the white and black lattice sites, respectively. 

penetrating Bravais lattices. 

m" 
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to a CSL with £ = 5. Now, if we displace the black 
lattice by, say, b ,=~a[310]w (where the subscript 
refers to the coordinate system of the white lattice), 
the original composite is reconstructed but its origin 
is shifted by the translation vector ½ [ 110] of the white 
lattice. 

3.2. Displacement vector set 

The effect of relative displacements on the spatial 
symmetry of a dichromatic composite can be rep- 
resented in a comprehensive way by means of the 
vector space (Buerger, 1950). For the purpose of our 
investigation the vector space is considered as the 
space containing the displacement vector set of the 
associated dichromatic composite. 

The vector set is formed by drawing vectors 
between all points in the periodic dichromatic com- 
posite. These vectors are then assembled at common 
origin and the unit cell of the periodic vector set is 
established. The unit translations of the vector set 
correspond to the shortest independent displacements 
which recreate the original composite (it is possible 
that such displacements reconstruct the original com- 
posite in a new position, but this is not important as 
far as its symmetry is concerned). In other words, the 
translational symmetry of the vector set represents 
the periodicity of the spatial symmetry variation. Con- 
sequently, it is adequate to investigate changes of the 
spatial symmetry only for displacements which fall 
within the Wigner-Seitz cell of the associated vector 
set. Such displacements are referred to as 'reduced 
displacements' (Pond & Bollmann, 1979) and denoted 
t t" 

It is evident, from the construction of the vector 
set, that the fundamental and vector sets have an 
equal number of translational axes. In the case of 
dichromatic composites with no translational sym- 
metry the vector set is aperiodic and, hence, no restric- 
tions are imposed on the displacements. For com- 
posites with one- or two-dimensional periodicity the 
unit cell of the vector set is linear or planar respec- 
tively and the reduced displacements must be projec- 
ted within the corresponding Wigner-Seitz cell. 
Finally, three-dimensional periodicity in a composite 
implies a three-dimensional Wigner-Seitz cell and, 
thus, the reduced displacements must end within or 
at the boundaries of this cell. 

3.3. General and special displacements 

The spatial group of a periodic composite may be 
symmorphic or nonsymmorphic. The symmetry ele- 
ments of the former are equivalent to point symmetry 
elements and their conservation rules have already 
been studied in part I. It remains, therefore, to deal 
with translation-coupled symmetry elements which 
may be present in the original composite or be created 
by the appropriate displacement of the black com- 

ponent. Consider, for example, the one-dimensional 
periodic composite in Fig. 4(a). The Wigner-Seitz 
cell of the associated vector set is along the translation 
axis and extends from - a / 2  to a/2. Any infinitely 
small displacement of the black component away 
from the reference position destroys the mirror plane 
my of the original composite. Thus, for - a / 2  < t' < a/2 
and t' # 0 the mirror my is not present in the obtained 
dichromatic composite. The displacements t ' =  +a/2,  
however, bring the two components in a glide-reflec- 
tion relationship (Fig. 4b). 

The variation of spatial symmetry of a periodic 
composite is, therefore, a consequence of two reasons. 
Firstly, the displacement may destroy some symmetry 
elements of the original composite. Secondly, the 
same displacement may transform some (if not all) 
translation-free rotation axes or mirror planes of the 
original composite into screw axes or glide planes (or 
vice versa). Displacements with this property, as well 
as displacements which conserve the composite as a 
whole, will be called 'special displacements', whereas 
the remaining are referred to as 'general displace- 
ments'. 

Special displacements correspond to dichromatic 
composites in which the relative translational position 
of their components is defined by a vector of specific 
magnitude; the end-points of such vectors are special 
positions in the Wigner-Seitz cell of the associated 
vector set. Any infinitely small deviation away from 
the special position changes the symmetry of the 
composite. General displacements, on the other hand, 
are associated with dichromatic composites, the sym- 
metry of which remains unchanged over wide limits 
of displacement. 

O0 O0 O0 O0 O0 

m y o 0  O 0  O 0  O 0  O 0  

(a) 

O0 O0 O0 O0 O0 

• O 0  O 0  O 0  O 0  • 

(b) 

m 

(c) 

Fig. 4. (a) A composite with one-dimensional periodicity; the unit 
translation is indicated by the vector a. Open and filled circles 
represent points of the white and black (one-dimensional) com- 
ponents respectively. The composite exhibits symmetry/~ ram'2'. 
(b) The composite obtained from (a) by displacing the black 
component by t = a/2; its symmetry is #ma'2'. (c) The disposal 
of symmetry elements for the composite shown in (b). 
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Table 5. Possibilities of  symmetry-element conserva- 
tion in spatial symmetry variation 

The symbols have the following meaning: tf  = translation-free sym- 
metry element, tb = translation-bearing symmetry element. 

Type of symmetry element 

Kind of  Before After 
No. symmetry element displacement displacement 

1 Ordinary tf tf 
2 tb tb 
3 Colour-reversing tf tf 
4 t f  tb 
5 tb tb 
6 tb tf 

3.4. Conservation o f  translation-coupled symmetry ele- 
ments 

Both general and special displacements change the 
spatial symmetry of the dichromatic composite by 
destroying some symmetry elements originally pres- 
ent while conserving others. By conservation of an 
ordinary or colour-reversing symmetry element we 
understand either that the element is invariant by the 
displacement or that the relative shift of the com- 
ponents transforms the symmorphic element into a 
nonsymmorphic one or vice versa. However, since a 
displacement changes only the relative translational 
position of the two components, a special displace- 
ment transforms only colour-reversing axes and/or  
mirror planes to their respective translation-coupled 
counterparts or vice versa. 

The various cases of symmetry-operation conserva- 
tion are given in Table 5. Cases 1 and 3 have already 
been investigated in part I. Moreover, it can easily 
be seen that in cases 2 and 5 the conditions for 
conservation of the associated symmetry operations 
are identical to those for symmorphic operations. We 
have, therefore, to consider only cases 4 and 6 here. 
For the former, let Sc -= (Sol0) be the symmetry oper- 
ation of the original composite and let (Scla') be the 
Seitz symbol (Seitz, 1936) of the corresponding non- 
symmorphic operation created by the displacement 
t'. Then, in the original composite there is at least a 
white and a black point, rw and rb, respectively, for 
which S, rw - (S,[O)r~ = rb. The positions of the above 
points, after displacement t', are r~ - t ' / 2  and rb + t ' /2  
and their symmetry relationship is (Sol ~')(r~ - t'/2)-= 
S,(r~ - t'/2) + ~ = rb + t'/2. A symmorphic colour- 
reversing symmetry operation S, is, therefore, trans- 
formed to its nonsymmorphic equivalent (Sc[a-) only 
by displacements satisfying the relation 

S¢(- t ' /2 )+~=t ' /2 .  (3) 

Similarly, a nonsymmorphic colour-reversing oper- 
ation (Sd'0 is transformed to its symmorphic residue 
by displacements given by 

S ~ ( - t ' / 2 ) - x = t ' / 2 .  (4) 

We are now ready to establish the conditions for 
conservation of nonsymmorphic symmetry elements. 
Ordinary or colour-reversing translation-coupled ele- 
ments are invariant by exactly the same displacements 
which conserve the corresponding symmorphic ele- 
ments. A colour-reversing glide-reflection plane, for 
example, is conserved by displacements perpen- 
dicular to it irrespectively of its translation com- 
ponent (cf. rule 4). Thus, it can be said that rules 1-8 
given in part I are identically applied for the invari- 
ance of symmorphic and nonsymmorphic symmetry 
elements. This is demonstrated by considering the 
following example. The dichromatic composite in Fig. 
4(b) has spatial symmetry ~ma'2', where /~ stands 
for the one-dimensional lattice and the disposal of 
the symmetry elements is shown in Fig. 4(c). A dis- 
placement t' perpendicular to the a' conserves this 
colour-reversing glide-reflection plane as well as the 
ordinary plane rn. Conversely, if the displacement is 
parallel to a', and hence perpendicular to m, both 
symmetry planes are destroyed. 

We examine next the conditions under which a 
symmorphic symmetry element is transformed to a 
nonsymmorphic one or vice versa. Consider, for 
example, a twofold colour-reversing axis along the z 
axis of a right-handed orthogonal coordinate system 
of the white component. The considered 2' axis can 
be changed to only a 2~ screw axis parallel to the z 
direction of the coordinate system. Thus, we have 
2~ = (2'100c/2), where c is the magnitude of the perio- 
dicity vector along the z axis. Consequently, the dis- 
placements transforming 2' to 2~ are given by 

/ -10 0 /t,2  t0) (tx,2   0 
0 / = 

0 0 1 / \ - t ' / 2 /  el2 t 'zl2/  

i.e. by t '=(x ,y ,  c/2). This can be written as t '=  
(x, y, 0) +(0, 0, e/2), where the first term corresponds 
to a displacement for which the initial 2' axis is 
invariant and the second term is the displacement 
bringing the two components into 2] relationship. 

Rule 9: Colour-reversing screw diads or glide- 
reflection planes are created from 2' axes or m' planes 
(or vice versa) by displacements t '=  t] +t~, where t~ 
is the displacement leaving the 2' or m' invariant and 
t~ is a displacement component parallel to these sym- 
metry elements and equal to the translation part of 
the screw diad or glide plane. 

For n-fold screw axes ( n > 2 )  we note that the 
relative displacement simply shifts one component 
with respect to the other. 

Rule 10: Only four and sixfold colour-reversing 
rotation axes can be changed to screw axes or vice 
versa. The screw axes have neither fight nor left sense, 
i.e. they can be only 4~ and 6~, and they correspond 
to a relative displacement parallel to the original axis 



210 THE VARIATION OF INTERFACIAL SYMMETRY 

with magnitude equal to half the period along the 
colour-reversing 4' and 6' axes. 

As was pointed out above, any displacement 
changes the spatial and/or  point symmetry of the 
original dichromatic composite. The point-symmetry 
case was investigated in part I, and remains, therefore, 
to give the procedure for the determination of the 
spatial symmetry variation. The method is based on: 
(a) the original composite exhibits the highest poss- 
ible symmetry for the given components and mis- 
orientation relationship, and (b) a displacement can 
never modify the periodicity of the dichromatic com- 
posite (Pond & Vlachavas, 1983). This means that the 
spatial symmetry group of the composite with t ~ 0 
must be a subgroup of that corresponding to t = 0 but 
the two groups have the same translational subgroups. 

3.5. Deterrhination of the spatial symmetry for general 
displacements 

According to the discussion in the foregoing sec- 
tion, general displacements can never transform a 
symmorphic symmetry element into a nonsymmor- 
phic one or vice versa. The spatial symmetry of a 
composite obtained by a general displacement is, 
thus, described by a group in which: (i) all symmetry 
operations are also symmetry operations of the 
original composite, and (ii) the subgroup of transla- 
tions is the same as that of the original composite. 
General displacements correspond, therefore, to 
spatial subgroups in which the descent in symmetry 
has only affected the symmorphic or nonsymmorphic 
rotations and reflections but not the accompanying 
translations in the unit cell. In other words, the spatial 
symmetry for general displacements is a zellengleiche 
subgroup (Hermann, 1929) of the original symmetry 
group. Thus, the procedure to determine the spatial 
symmetry for general displacements is as follows. 

Let G be the spatial symmetry of the original com- 
posite and g be its point group. Firstly, we investigate 
the point-symmetry variation by the method proposed 
in part I. This allows us to establish the displacements 
conserving subgroups of the point group g. Secondly, 
we obtain the list of zellengleichen subgroups of G. 
Hermann (1929) has shown that there is only one 
zellengleiche subgroup of G for each subgroup of g. 
Thus, if the displacement conserving a particular 
subgroup of g is obtained, then this displacement 
conserves also the isomorphic zellengleiche subgroup. 
In most cases the answer can be written immediately 
by inspection of the symbols. However, attention 
should be given for the cases where the point sub- 
group adopts crystallographically non-equivalent 
orientations in the point group of the original com- 
posite. In such cases different zellengleichen sub- 
groups may correspond to the non-equivalent point 
groups. The ambiguity can be resolved by considering 
the point symmetry operations that are conserved by 

the particular general displacement. Thus, we can 
establish the point subgroups, and consequently the 
zellengleichen subgroups, corresponding to these dis- 
placements. 

3.6. Determination of the spatial symmetry for special 
displacements 

Special displacements give dichromatic composites 
with spatial symmetry described by a group which: 
(i) has the same subgroup of translations as the 
original composite; (ii) is isomorphous with a sub- 
group of the point group of the original composite; 
and (iii) may contain translation-coupled colour- 
reversing symmetry elements corresponding to trans- 
lation-free colour-reversing elements present 
originally in the composite or vice versa. Con- 
sequently, a composite corresponding to a special 
displacement displays nonsymmorphic/symmorphic 
symmetry isomorphic to the symmorphic/nonsym- 
morphic symmetry of a zellengleiche subgroup of the 
original composite. This can be expressed by the 
following considerations. 

Let G be the spatial group of the original com- 
posite, T the translation group of the Bravais lattice 
of G and Gz a zellengleiche subgroup of G. Then, Gz 
can be expressed as the sum of the left cosets of its 
translation group T: 

G~ = (r, ]~r,) T + (r2]~r2) T + . . .  + (rh ]'rh) T 

+(r'h+,l'rh+~) T +(r'~+2l~rh+2) T +.. .  +(r'2hl~'2h) T, 

where "ri is the supplementary displacement associ- 
ated with the translation-coupled point symmetry 

t operation ri and the rotational parts r,, r2 , . . . ,  rh, rh+,, 
r~,+2,..., r~h form the point group g~ isomorphic to 
Gz. A special displacement t' will change "rh+i to 
"rh÷~ + t' SO that G, changes to 

Gs = (r, lx,)T +(r21"r2)T +...  + (rhlxh)T 

+(r~,÷,l~h+, +t ' )T +(r~,+21~h+2 +t ' )T  

+...  +(r~hl'r2h +t') T. 

To establish the spatial groups for special displace- 
ments we apply, therefore, the following algorithm. 
For each zellengleiche subgroup Gz of the original 
group we determine the isomorphic spatial groups 
having the same Bravais lattice as Gz and the same 
ordinary symmetry operations. For each of the so 
obtained spatial groups Gs we check if there is a 
displacement t' to transform G~ to Gs. This can be 
achieved by adopting the description of a spatial 
group by means of its 'general positions' (Interna- 
tional Tables for X-ray Crystallography, 1965). Com- 
parison between the sets of general positions of G~ 
and G~ will yield the required displacement t'. 

We consider, as an example, the two-dimensional 
group p2'm'm; the general positions of this group 
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are: x, y; x, )7; £', y';  ~', )7', where the primes indicate 
that in the particular general position colour-reversing 
occurs. The two-dimensional space groups in the class 
2' m'm are: p2'm'm, p2'm' g, p2' g' m and p2' g' g (Belov 
& Tarhkova, 1956). We note, however, that both 
p2'm'g and p2'g'g possess an ordinary g plane which 
is not present in the original group p2'm'm. Thus, 
only the group p2'g'm may correspond to a special 
displacement. Its general positions are expressed rela- 
tive to the coordinate system of the original group as 
x,y; x,)7; ~', ½+y'; ~', ½-y' .  The first and second 
positions in both sets correspond to the common 
ordinary elements of p2'm'm and p2'g'm. Con- 
sequently, we can transform p2'm'm to p2'g'm by the 
displacement t ' =  (0, ½) as can be seen by considering 
the geometric representations of the two groups (Fig. 
5). 

3.7. Example of spatial symmetry variation 

To conclude this paper the procedure for studying 
the symmetry variation of a periodic composite is 
demonstrated by the following example. The original 
composite considered is formed by two face-centred 
cubic lattices of identical lattice parameter a which 
are related by the misorientation relationship 
[001]/36.9 ° (Fig. 3). As was mentioned in § 3.1, this 
composite corresponds to the 2~ = 5 CSL misorienta- 
tion, its space group is I4/mm'm', and its vector set 
has a body-centred tetragonal unit cell with lattice 
parameters, expressed relative to the white lattice, 
b~ = ~a[310]~, b2 = ~oa[ 130]w and b 3 = b l  X b2 = [001 ]w. 
The coordinate system used for expressing the dis- 
placements t' is as follows: the origin is taken to be 

r..... 

(a) 

× 

~7 

~7 
(b) 

[7 

127 

Fig. 5. Geomet r ica l  representa t ions  o f  (a)  p2'm'm and (b) p2'g'm 
two-dimensional  space groups.  

Table 6. Zellengleichen subgroups of the two- 
coloured space group 14/mm'm' 

The  serial numbers  in this table cor respond  to those in 
Table  1. 

Zellengleiche Zellengleiche 
No. subgroup  No. subgroup  

1 14/mm'm' 18 C2'/m' 
2 142'm' 19 C2/m 
3 I7~2'm' 20 lm'm'2 
4 14m'm' 21 Fm'm'2 
5 142'2' 22 12'2'2 
6 14/m 23 F2'2'2 
7 14 24 P i  
8 14 25 Cm' 
9 lm'm'm 26 Cm' 

10 Fm' m'm 27 Cm' 
11 1re'm2' 28 Cm' 
12 1re'm2' 29 C2' 
13 Fro'm2' 30 C2' 
14 Fro'm2' 31 C2' 
15 C2'/m' 32 C2' 
16 C2'/m' 33 Cm 
17 C2'/m' 34 C2 

35 PI 

a coincidence site, and the unit vectors along the x, 
y and z axes are b~, b2 and b3, respectively. 

(a) General displacements: the point-symmetry 
variation of 4/mm'm' has already been studied in 
§ 2.4 and, hence, Table 4 may be regarded as giving 
the point symmetry of the composites obtained by 
general displacements. In order to establish the space 
symmetry of these composites we consider the list of 
the zellengleichen subgroups of I4/mm'm' (Table 6) 
and we combine this list with Table 4 (see § 3.5). 
Consider, for example, the displacement t ' =  (0, 0, z) 
which yields a composite with point symmetry 42'2'. 
Referring to Table 6 we see that the zellengleiche 
subgroup of I4/mm'm' belonging to the class 42'2' 
is I42'2'  and, consequently, the space group of the 
composite obtained by t ' =  (0, 0, z) is I42'2'. 

This procedure may lead to ambiguity when a point 
subgroup adopts crystallographically non-equivalent 
orientations in the point group of the original com- 
posite. However, the ambiguity can easily be resolved 
as explained in § 3.5. Such a case occurs for the 
displacements t' = (x, 0, 0) and t' = (x, x, 0); both of 
them correspond to composites with point symmetry 
re'm2'. The subgroup m'm2' adopts four different 
orientations in 4/mm'm' located over an angle 45 ° 
about the fourfold axis; two of these orientations are 
not crystallographically equivalent. To establish, 
therefore, the space groups of the composites with 
t' = (x, 0, 0) and t' = (x, x, 0) we note that the first dis- 
placement conserves the subgroup re'm2'={1, 2o~0, ~' 
s00~, S~oo} and, according to Table 6, the respective 
space group is lm'm2'. On the other hand, if the 
displacement t' = (x, x, 0) is considered, then the con- 
served symmetry operations form the subgroup 
re'm2' ~' ' = {1, 2TlO, So01, s~ ~o} and, hence, the space group 
for t' = (x, x, 0) is Fm'm2'. 
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(llOOO) 
x , y , z  

(210o1000) 
x', .~', ~' 

and 

In a similar way we determine the space symmetry 
for the remaining displacements. However, we must 
remember  at this point that the symmetry of a com- 
posite varies periodically with the displacement. 
Thus, t' and t' +to~, where to~ is a translational vector 
of  the vector set associated with the original com- 
posite, will yield the same composites. The shortest 
to, is (I, ½, I) and this vector, or one of its symmetry 
equivalents, must be added to each displacement 
determined above in order to obtain the full set of 
general displacements within the Wigner-Seitz cell. 

(b) Special displacements: first of all, we establish 
by the algorithm mentioned in § 3.6 the space groups 
which may correspond to special displacements 
(Table 7). We must notice, however, that the space 
groups are indicated in Table 7 by their standard 
symbols, and that different settings may be possible. 
Thus, for the group Imm'a'  the glide-reflection plane 
may be perpendicular  to either the x axis or the y 
axis of  the coordinate system of the original com- 
posite; thus, we have either Ib'm'm or Im'a'm (see 
International Tables for X-ray Crystallography, 1965). 
To determine the displacement transforming Im'm'm 
to, say, Im'a 'm we consider the general positions of 
both groups: 

Im'm'm" (0,0, 0" ~ 

(2~o,1OOO) (Tlooo) (soo,lOOO) 
~,?,z  x , y , z  x , y ,~  

(2 ',olOOO) (S',oolOOO) (S ,olOOo) 
- '  .~' - '  ' Z '  ' Z '  x , y ,  x , y ,  x,37, 

Im'a'm: (0, 0, 0; ½, ~ ~, ~) + 

(llO00) (2o o,1000) 01000) (Soo,lO00) 
x, y, z ~, y, z x, y, z x, y, 

,oo1 OO) (2A]ol½OO) (s',ool½OO) (S ,ol O) (2 v 

½+x', y', £' ½- ' ~-  ' z' z'. - x ,  y' ,  ~.' x ,  y' ,  ~ + x ' ,  y' ,  

The general positions of the first line in the two groups 
correspond to their common symmetry operations. 
lm 'm 'm is, therefore, transformed to Im'a'm by t ' =  
(½, 0, 0) or t ' =  (0, ½, I). On the other hand, the general 
positions of  Ib'm'm are 

Ib'm'm: (0 ,0 ,0 ;1 ,1 ,1 )+  

(llooo) (2 o,1OOO) (Tlooo) (Soo,lOoo) 
x , y , z  g ,~ ,z  x , y , z  x , y ,~  

(21'oo ~0)  (2~;o ~0 )  (S',oo 010) (S'o,o 010) 

'I  -'½ -'½ ' z '  " 'z'  x ,  - y ,  x ,  + y ,  x ,  + y ,  x , ~ - y ,  

and, consequently, this group corresponds to t ' =  
(0, 1/2, 0) or t ' =  (1/2, 0, 1/2). 

As can be seen from Table 7 a composite with 
symmetry, say, 14/mc'm'  is created by t ' =  (0, 0, ½) or 

Table 7. Determination of  the space groups correspond- 
ing to special displacements for the group 14 /mm'm'  

The c o o r d i n a t e  sys tem for  spec i fy ing  t' is as fol lows:  the  origin is 
t aken  to be  the  cent re  o f  the  Wigner -Se i t z  cell o f  the  assoc ia ted  

vec tor  set, x is paral le l  to bl, y to b~ and  z to bl xb2. 

I s o m o r p h i c  
space  g roup  

Z e l l e n g l e i c h e  for  specia l  Frac t iona l  coord ina te s  
s u b g r o u p  d i sp l acemen t  o f  d i sp l acemen t s  t' 

Gz Gs t r a n s f o r m i n g  Gz to Gs 
1 4 / m m ' m '  1 4 / m c ' m '  1 i I (o, o, ~), (~, ~, o) 

IF~2'm' I7~2'd' i I I I (~, 0, a), (0, ~, a), 
I I I I 

( 0 ,  ~, - a ) ,  (2 ,  0 ,  - a)  
1 4 m ' m '  1 4 c ' m '  i i i (o, o, ~), (b ~, o) 
l m ' m ' m  l b ' a ' m  (0, O, ~), (~, ~, 0), 
I m ' m ' m  I m m ' a '  (-~, O, 0), (0, ~, O) 

I I I 1 (0, ~, ~), (2, O, ~) 
l m '  m2 '  l m a ' 2 '  l I (~, o, o), (o, ~, o), 

I I I I 
(0, 2, 9 ,  (~, O, ~) 

C 2 ' / m '  C 2 ' / c '  ~, a (0, o, ~), (~, ~, o) 
l m ' m ' 2  lb 'a '2  (0, 0, ~), (~, ~, 0) 
l m ' m ' 2  l m ' a ' 2  (~, 0, 0), (0,~, 0), 

I I I 1 (0, 2, 9, (~, O, ~) 
F m  ' m '2 Fd '  d '2 ~ t ~ (2, 0, a), (0, ~, a), 

I I / 1 (0, 2, - ~), (~, 0, - ~) 
C m '  Cc'  ~ ~ ~ (0, O, ~), (2, ~, O) 

Table 8. Variation of  the dichromatic composite sym- 
metry I 4 / m m ' m '  with relative displacement t' 

The  c o o r d i n a t e  sys tem used  for  express ing  t' is the  s ame  as that  
in Table  7. 

Frac t iona l  coo rd ina t e s  
o f  equ iva len t  d i sp l acemen t s  Space  

(0,0, .i  0, ~, ~, ½) + Rank symmetry 
(0, 0, 0) 2 1 4 / m m ' m '  

(0, 0, ½) 2 1 4 / m c ' m '  

(~, 0, ¼), (0, 12, a)l 4 I 4 2 ' d '  

(I,  O, 0), (0, ½, O) 4 l m m '  a '  

(0, 0, z), (0, 0, ~) 4 I42'2' 

(x, 0, 0), (0, x, 0), (4 0, 0), (0, ~, 0) 8 I r e 'm2 '  

(x, x, 0), (~, x, 0), (x, ~, 0), (~, x, 0) 8 Fro 'm2 '  

(x, 0, z), (0, x, z), (;?., 0, z), (0, .~, z), 16 C2' 
(x, o, ~), (o, x, ~), (4 o, ~), (o, ~, ~) 
(x, x, z), (~, x, z), (x, ~., z), (4 ~ z), 16 C2' 
(x, x, e), (~ x, ~), (x, ~ ~), (~, ~, ~) 

(x, y, 0), (y, x, 0), (x, ?, 0), (y, ~ 0), 16 C m  
(~, 37, 0), 0 7, Y., 0), (Y., y, 0), (p, x, O) 
(x, y, z), (~ y, z), (x,)3, z), (~ ~, z), 32 Pl  
(y, x, z), (y, x, z), (y, 2, z), (y, ~ z), 
(x, y, e), (~, y, e), (x, ?, e), (~, ?, ~), 
(y, x, ~), (.~, x, £), (y, 2, £), (~, 2, ~,) 

t ' =  (½, I, 0). These two displacements are, however, 
related by a translation operator of the vector set 
associated with the original composite, i.e. (0, O, I)= 
(I, ½, 0) + (I, I, ½). This is an immediate consequence of 
the fact that the translational symmetry of the vector 
set represents, as explained in § 3.2, the periodicity 
of the spacial symmetry variation. 

The space-symmetry variation of the composite 
14/mm'm'  is summarized in Table 8. In the heading 
of the first column of this table the symbol (0, 0, 0; 
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El-, ½, ½) + appears. This means that the full set of dis- 
placements corresponding to a particular composite 

1 1 symmetry is obtained by adding the vector (~, ~, ½) in 
turn to all displacements of the set given in the first 
column. The full set of displacements contains all the 
vectors whose end-points are equivalent positions in 
the space group of the vector set associated with the 
original composite. Such a set of displacements will 
be referred to as 'set of equivalent displacements'  and 
the number of equivalent displacements in the set is 
called its rank. 

In part I we pointed out there are displacements 
which create symmetry-related composites. This is 
true for periodic composites as well. In this case, 
however, the periodicity of the spatial symmetry vari- 
ation must also be taken into account. If the transla- 
tional symmetry of the vector set of a periodic com- 
posite is described by a primitive lattice, then the set 
of equivalent displacements contains all the shift vec- 
tors which yield symmetry-related composites. On the 
other hand, for vector sets with non-primitive lattices 
the set of equivalent displacements contains in addi- 
tion displacements which are associated with iden- 
tical composites. This is the case for the above- 
considered example. The equivalent displacements 
(0, 0, z), (0, 0, ~), (½, ½, ½ + z), (½, ½, ½- z), for instance, 
yield composites with symmetry I42'2'. But all these 
composites are not symmetry equivalent. The first and 
third, as well as the second and fourth, displacements 
are interrelated by the translation vector (½, ½, ½) of the 
vector set and, hence, they correspond to identical 
composites. Thus, the number of symmetry-related 
composites depends on whether the lattice of the 
vector set (or, equivalently, of the periodic composite; 
see Buerger, 1959) is primitive or not. The number of 
symmetry-related composites is equal to the rank of 

the set of equivalent displacements divided by the 
number of  lattice points in the unit cell of the periodic 
composite. This can be expressed comprehensively 
through a detailed study of the symmetry-related 
composites obtained by general and special displace- 
ments. Such a formulation in group theoretical terms 
will, however, be discussed in a following paper. 
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Abstract 
A group-theoretical method is presented that enables 
the derivation of the symmetry of any composite 
created by the superposition of two identical point 
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groups. The invariant points of the two components 
are considered in coincidence and the composite sym- 
metry is expressed as the intersection of two sets of 
symmetry operations. The first set contains the sym- 
metry operations common in the components when 
their mutual disposition is taken into account, 
whereas in the second set belong the additional 
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