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group scatterers in lieu of individual atomic ones
improves the efficiency by almost an order of magni-
tude. We are currently testing the method on oligo-
nucleotide and protein structures.

We thank our colleagues J. L. Sussman and F. L.
Hirshfeld for many useful discussions.
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Abstract

This paper investigates changes of the bicrystal sym-
metry caused by rigid-body relaxation. Analytical
expressions are derived for the determination of the
symmetry of a bicrystal, or, more generally, of a binary
composite, corresponding to a particular relative dis-
placement of its components. Such displacements can
change the point and/or space symmetry of the com-
posite either by compressing symmetry operations or
by transforming symmorphic symmetry operations to
their nonsymmorphic counterparts, or vice versa. In
the latter case the relative displacements have a well
defined magnitude and direction and it is shown that
the composite space groups associated with these
displacements correspond to a new type of subgroups
of space groups. These subgroups, although having
the same unit cell as the original space group, are

* Present address: 3 Kristalli Str., 111 41 Athens, Greece.

0108-7673/84/030200-14801.50

similar to the klassengleiche subgroups in the sense
that the descent in symmetry has affected the transla-
tions in the unit cell of the original group. Further-
more, it is pointed out that the reduction of symmetry
due to relative displacements is accomplished by a
multiplicity of crystallographically equivalent ways
and that their number and interrelation depends on
the space symmetry of the original composite.

1. Introduction

The crystallographic framework of planar grain boun-
daries was recently discussed by Pond & Bollmann
(1979). Their considerations, enabling the description
of the interfacial symmetry, were based on the
introduction of the bicrystal which is defined as the
system of the two adjacent crystals containing the
planar interface. The starting point of the
methodology of Pond & Bollmann, which was sub-
sequently extended by Vlachavas (1980) and Pond &

© 1984 International Union of Crystallography
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Vlachavas (1983), is the following idealized construc-
tion of a bicrystal.

We begin by interpenetrating the two lattice com-
plexes corresponding to the two crystals of the
bicrystal so that they have a common origin and are
in complete coincidence. For convenience, one lattice
complex is designated black and the other white
(Pond & Bollmann, 1979). The desired relative
orientation and position of the bicrystal components
is then obtained by: (i) causing the black lattice com-
plex to undergo a rotation R while keeping the white
lattice complex fixed in space, and (ii) translating the
black complex by t with respect to the white complex.
The interpenetrating configuration of black and white
lattice complexes thus obtained is called, following
Vlachavas (1980), the dichromatic complex.

Having obtained the dichromatic complex for the
desired R and t we are now in a position to create
the bicrystal. We start by introducing a mathematical
plane into the dichromatic complex in the orientation
and position of the chosen interface. The bicrystal is
then obtained by locating atoms at the positions of
the black lattice complex on one side of the interface
and at the positions of the white lattice complex on
the other side.

This procedure for manufacturing a bicrystal can
be successfully applied to express the bicrystal sym-
metry in terms of the space group and the relative
orientation and position of the crystals adjoining the
interface. The relationship between the bicrystal sym-
metry and the space group of the adjacent crystals
was investigated by Pond & Vlachavas (1983); the
variation of bicrystal symmetry with changes in the
relative orientation of the component crystals can be
obtained by the treatment described by Vlachavas
(1984). Thus, one of the questions that remains to be
answered is: ‘how does the symmetry of the dichro-
matic complex or the bicrystal vary when the black
lattice complex undergoes a shift with respect to the
white lattice complex?’. These symmetry changes are
the objective of the analytical treatment developed
in this paper. The proposed approach can be applied
equally well to study the symmetry variation with
displacement of either the dichromatic complexes or
bicrystals. Consequently, in our considerations we
will refer to the more general case of a dichromatic
composite characterized by a specific combination of
two identical components. These components may,
in general, have zero-, one-, two- or three-dimensional
periodicity.

The analytical treatment proposed in this paper
also enables the determination of the interrelationship
of certain rigid-body relaxed interfaces. Computer
simulation (see e.g. Smith, Vitek & Pond, 1977; Pond,
Smith & Vitek, 1979) and transmission electron micro-
scopy observations (Pond & Vitek, 1977; Pond, 1979)
indicate that the energetically favourable structures
of coincidence-site-lattice grain boundaries are
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characterized by specific relative translations. Such
rigid-body displacements lead, as pointed out by
Pond (1977), to a multiplicity of possible configur-
ations that can exist for a given coincidence-site-
lattice grain boundary. The number and disposition
of rigid-body relaxed interfaces are obtained by
analysing the bicrystal symmetry variation with dis-
placement according to the treatment developed in
this paper.

As mentioned above, one of the components of the
dichromatic composite is regarded white and the
other black. Thus, the point and/or space group of
the dichromatic composite is expressed by using two-
coloured symmetry formulation (see e.g. Shubnikov
& Koptsik, 1974). In this way, symmetry relationships
between the two components are described by colour-
reversing symmetry operations, whereas the symmetry
between parts of the same component corresponds
to ordinary symmetry operations. The symbols of
symmetry operations, elements and groups used in
this paper are consistent with the notation outlined
by Vlachavas (1984).

The parallel displacement of, say, the black com-
ponent with respect to the white one changes the
point and/or space symmetry of the dichromatic com-
posite. The variation of the point symmetry with
relative displacement is examined in part I of the
paper while in part II we consider the more general
case of periodic composites. Though this method
involves a slight expansion and some repetition of
the work, for reasons of clarity it appears preferable
to a direct consideration of the more general problem
and a subsequent deduction of the simpler one as a
particular case.

2. Part I: Point-symmetry variation

For studying the symmetry variation of a dichromatic
composite its white component is considered fixed in
space and is used as the reference component. Any
relative displacement between the two components
is introduced by the appropriate translation of the
black component. This translation is represented by
the vector which connects the origin of the orthogonal
coordinate system of the white component to the
origin of the black coordinate system. This vector
expressed relative to the white coordinate system is
t=ai+Bj+ yk, where i, j, k are the unit vectors along
the x, y and z axes, respectively, and will be denoted
by t=(a, B, 7).

If the black component is displaced away from its
original position, the geometrical relationship and,
hence, the symmetry between the two components
changes. As an example, let the dichromatic com-
posite in Fig. 1(a) be obtained by superposing two
rectangles which are rotated relative to one another
by 90°. The symmetry of the composite (on a one-sided
plane) is 4'mm’. Next we displace the black rectangle
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by t=(x, 0, 0), i.e. by an arbitrary amount along the
x axis, and we see (Fig. 1b) that the symmetry of the
composite is reduced to m.

2.1. Subgroup relations in the point-symmetry

variation

It is seen by comparing the composites in Figs. 1(a)
and (b) that the relative displacement destroys some
of the symmetry operations of the original composite
while it conserves others and yields, consequently, a
composite with lower symmetry. This is so, however,
only when the original composite is holosymmetric,
i.e. when the original composite exhibits the highest
possible symmetry which can be created by the super-
position of two given components in a given mis-
orientation relationship.*

For finite components and for a particular mis-
orientation the unique translational position of the
two components leading to the holosymmetric com-
posite corresponds to t=0. This is so because, as
pointed out by Vlachavas (1980), the dichromatic
composite has the common symmetry of the
individual components augmented by the operations

* The rotation of the black component relative to the white one
is called the misorientation relationship of the two components
(or misorientation for short).

m’ m’
AN /
m___ — _—eX
/ | AN
(a)
o —

(b)

Fig. 1. The variation of the point symmetry with displacement.
The original composite in (a) is obtained by the superposition
of a white and a black rectangle which are relatively rotated by
90°; its symmetry is 4'mm’. When the black component is dis-
placed by t=(x, 0, 0) the composite symmetry is reduced to m(b).
The coordinate system is shown in (a); the z axis is out of the
plane of the paper.
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of rotation and translation which describe their
mutual position. When the components have common
origin they possess the maximum number of common
symmetry elements for the given misorientation and,
consequently, the composite exhibits the highest poss-
ible symmetry.

In what follows the composite with t=0 is taken
to be always holosymmetric, unless specifically stated
to be otherwise. In this case the point symmetry of
the composite after any displacement is a subgroup
of the original point group. First of all, it is a group
by virtue of the restrictions placed upon the conserva-
tion of its elements. No product of elements in the
set can be unrelated to the particular geometrical
relationship of the two components, and all elements
of the initial composite related to this relationship
are included in the set. Secondly, it is a subgroup
because in displacing the black component symmetry
elements are removed but not added as long as the
initial composite is holosymmetric.

Having established the relationship between the
composite point groups before and after displacement
an analytical approach for investigating the point
symmetry variation can be derived. For this the
colour-reversing and ordinary symmetry operations
are considered separately.

2.2. Conservation of colour-reversing
operations

symmetry

The colour-reversing symmetry operations of the
dichromatic composite arise by geometrical relation-
ships between the white and black components. Thus,
any displacement t which does not alter a particular
relationship conserves the respective operation,
which, however, is shifted by t/2. Let us consider the
following example. A dichromatic composite is
obtained by superposing two rectangles in such a way
that their long sides are coincident (Fig. 2a). The
symmetry of the composite, which is not holosym-
metric, is 2’mm’. Next, we displace the black rectangle
by t=(x,0,0) and we see (Fig. 2b) that the mirror
plane m' has been shifted by (x/2, 0, 0) relative to its
original position.

When the black component is displaced by t the
origin of the coordinate system has to be displaced
by t/2 in order to retain the form of the symmetry-
operation matrix representations (this coordinate sys-
tem is called the ‘displaced coordinate system’).
Alternatively stated, it can be considered that the
black component is displaced by t/2 and at the same
time the white component by —t/2. In this case the
conserved symmetry elements remain in their initial
positions and, hence, they are expressed relative to

“the original coordinate system.

Let S. be a colour-reversing symmetry operation
which is conserved by the displacement t. Since S, is
present in the original composite there is at least a
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pair of points belonging to the white and black com-
ponents—their positions in the original composite are
denoted by r,, and r;, respectively — for which

Scl'w =Tp.

If the white and black components are displaced
by —t/2 and t/2, the positions of the above points
relative to the original coordinate system become
r,—t/2 and r,+t/2, respectively. The symmetry
relationship of the two points is now expressed by

Sc(r,—t/2)=r, +t/2.

Consequently, a colour-reversing symmetry operation
in the dichromatic composite is conserved at its
original position only for displacements which satisfy
the relation

S.(-t/2)=1t/2, M

where the displacement t/2 is expressed relative to
the coordinate system of the original composite (i.e.
the composite before displacement). Equivalently, (1)
gives the displacement t of the black component
which conserves the colour-reversing operation S..
However, in this case S, is shifted by t/2 from its
original position.
f)’

|m’x

~<

(a)

7’

fm

fom
Y,
(b)

Fig. 2. The shift of symmetry elements with displacement. The
original composite is shown in (a) and has symmetry 2'm'm. In
(b) the black rectangle is shifted by t=(x, 0, 0) and the composite
symmetry is again 2'm'm. However, the mirror m, is shifted by
t/2=(x/2,0,0) from its original position. The z axis of the
coordinate system is out of the plane of the paper; the x and y
axes are indicated in (a).

X
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2.3. Conservation of ordinary symmetry operations

Ordinary symmetry operations in the dichromatic
composite arise by the coincidence of identical oper-
ations® of the two components (see Vlachavas, 1984)
and, consequently, a displacement t conserves an
ordinary symmetry operation only if it leaves them
in coincidence. Referring to Fig. 2, for an example,
we note that the mirror m, occurs in the dichromatic
composite because of the coincidence of the mirror
planes of the individual components. Also, we note
that the displacement t = (x, 0, 0) is parallel to m, and,
hence, it conserves this mirror plane at its original
position.

Let S, be an ordinary symmetry operation which
is conserved when the two components are displaced
relative to each other by t. In the original composite
there is at least a pair of white points, r,, and r.,, as
well as a pair of black points, r, and r}, for which

[ A [
Sory,=r, and S,ry,=r,.

After displacement t the positions of the points in
the white component become r,—t/2 and r;, —t/2
and those in the black componentr, +t/2and r, +t/2,
respectively. Therefore, the symmetry relationships
of the two points are given by

So(ri,—t/2)=r,~t/2 and S,(r,+t/2)=r,+t/2.

Consequently, an ordinary symmetry operation is
conserved by a displacement only if

So(t/2)=t/2, )

where, again, the displacement t/2 is expressed rela-
tive to the coordinate system of the original com-
posite.

2.4. Example of point-symmetry variation

The application of the relations derived in the
foregoing sections is now demonstrated with refer-
ence to a particular example. Let both the white and
black components be non-periodict with symmetry
4/mmm and let these be superposed so the obtained
composite has symmetry 4/ mm’m’. This black—white
point group contains the following symmetry oper-
ations:

ordinary operations:
1 3 1 . Al 43
1, 4001, 40015 20015 > 4001, 40015 Sool
colour-reversing operations:

1 1’ 1’ 1 ’ ’ ’ r
2100» 20105 21105 21105 S1005 S0105 S1105 ST10-

*This implies, of course, that the symmetry operations of both
the white and black point groups are expressed relative to the same
coordinate system.

tThis implies that point symmetry only is taken into account;
the method is, however, identically applied for studying the point-
symmetry variation of periodic composites.
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Table 1. Subgroups of the black—white point group 4/ mm’'m’ (see Ascher & Janner, 1965)

All the subgroups are included in the table; from the total 35 subgroups only 19 are crystaliographically non-equivalent.

No.  Subgroup I 4% 401 2600 20 2610
1 4/ mm'm’ X X X X X X
2 2'm X x x x
3 “2'm X x
4 4m'm’ X X X X
5 422 X X X X X X
6 4/m X X X X
7 4 X x
8 4 X X X X
9 m'm'm X X X X

10 m'm'm X X

11 m'm2’ X X

12 m'm2’ X X
13 m'm2’ X

14 m'm2’ X

15 2/m' x X

16 2/m' X X
17 2/m’ X

18 2'/m’ X

19 2/m X X

20 m'm'2 X X

21 m'm'2 X X

22 2'2'2 X X X X
23 222 X X

24 1 x

25 m' X

26 m’ X

27 m’ X

28 m’ X

29 2 X X

30 2 X X
31 2 X

32 2’ X

33 m X

34 2 X X

35 1 X

The z axis of the orthogonal coordinate system used
for expressing the symmetry operations and the dis-
placements is along the fourfold axis. The x and y
axes, on the other hand, coincide with two mutually
perpendicular twofold axes of the point group.

The symmetry 4/mm’'m’ corresponds to the
holosymmetric composite created by the given com-
ponents in the given misorientation. Consequently,
the symmetry of the composites after displacement
will correspond to one of the subgroups of 4/ mm’'m’
given in Table 1.

The next stage in the procedure is to determine the
displacements for which each of the symmetry oper-
ations of 4/mm’m’ is invariant. Colour-reversing
operations are conserved by the displacements
obtained as solutions of (1) (Table 2). On the other
hand, the displacements conserving ordinary oper-
ations are, according to (2), those in Table 3. In
applying the results of Tables 2 and 3 it must be borne
in mind that they correspond to symmetry operations.
The displacements conserving a particular symmetry
element are those which leave all the symmetry oper-

1
2110

X

X

X

ations associated to this element invariant. The.

ordinary fourfold axis, for example, involves the pres-
ence of the four symmetry operations 1, 43015 2001,
43,,. All these operations are conserved for displace-

2%10 i 450, 4301 Soo1  Sloo  Soio Stie Shio
X X X x X X X X X
x X X X
X x x 3 3
X X X X
X
X X X X
X x
X x X x
X X x x x
X X
X X
x x
X X X
X X
x x
x x
X X x
X X

ments parallel to the z axis and, hence, the fourfold
ordinary axis is conserved by t=(0, 0, z).

Attention is now focused on displacements leading
to a composite with symmetry described by any one
of the subgroups of the point group 4/mm’m’. For
this, each subgroup given in Table 1 is considered
starting with those of higher symmetry. For each
subgroup a displacement conserving all the group
elements can be established.* Consider the subgroup
422" ={1, 4001, 2001, 4301> 21000 20105 21105 2710} The
fourfold axis is conserved by a displacement (0, 0, z)
whereas the axes 2ioo, 2010, 2110, 21,0 @€ conserved
by the displacements (0,y,z), (x,0,z), (X x,2),
(x, x, z), respectively. Therefore, the only displace-
ment conserving all the elements of 42'2" is of the
form t=(0, 0, z). Similar considerations give the dis-
placements which conserve each of the remaining
subgroups (Table 4). Since the point group of the
composite for t# 0 is restricted to be a subgroup of
the point group 4/mm’m’ and since all the subgroups
were considered it is clear that Table 4 covers all the
possible composites obtained from the original com-
posite.

* It should be remembered that certain subgroups are conserved
only for the displacement t =0 (see below).
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Table 2. Solutions of the equation S.(—t/2)=t/2 for
the colour-reversing symmetry operations of the black-
white point group 4/ mm’'m’

Symmetry element S_ Displacements conserving

the symmetry element S,

Matrix (expressed relative to
Symbol representation original coordinate system)

1 0 o0

2100 S ©,52)
0 0 -1
-1 0 0

2010 0o 1 0 (%9,2)
0o 0 -1
0 1 0

200 1 0 0 (% x,2)
0 0 -1
0 -1 0

2} -1 0 o0 (x, x, 2)
0 0 ~I
-1 0o 0

S1oo o 1 0 (x,0,0)
0 0 1
1 0 0

So10 0 -1 0 (0, y,0)
0 0 1
0 -1 0

stio =10 0 (x,x,0)
0 0 |
0 1 0

STho 1 0 o (%, x,0)
0 0 1

When the displacements conserving the elements
of a subgroup are determined the following must be
kept in mind:

(a) since the (ordinary) identity operation is con-
served by any displacement there is no need to
account for this operation;

(b) certain subgroups are not invariant by displace-
ments t # 0; the subgroup 42'm’, for example, is con-
served by the displacement t= (0, 0, 0) only; and

(¢) certain subgroups are formed by displacements
which at the same time conserve another subgroup
of higher symmetry.

The latter is a consequence of the conservation of
various symmetry elements by the same displacement.
For example, both subgroups 422" and 4 are formed
by a displacement of the form (0, 0, z). This happens
when the two groups contain common elements, or,
in other words, when the two groups are related by
a subgroup/supergroup relationship. In such cases,
however, the symmetry of the dichromatic composite
is described by the highest-order subgroup (highest
symmetry). This explains why the subgroup list must
be considered in a sequence of decreasing group
order.
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Table 3. Solutions of the equation Sy(t/2)=t/2 for the
ordinary symmetry operations of the black—white point
group 4/ mm'm’

Symmetry element S, Displacements conserving

the symmetry element S,

Matrix (expressed relative to
Symbol representation ordinary coordinate system)

1 0 0

| 0 1 0 x,52)
0 0 |
0 -1 0

4h0 1 0 0 (0,0, z)
0 0 1
0 1 0

4301 -1 0 0 0,0, 2)
0 0 1
-1 0 0

2001 0 -1 0 (0,0, 2)
0 0 1
-1 0 0

i 0 -1 0 (0,0,0)
0 0 -1
0 1 0

3, -1 0 0 (0,0, 0)
0 0 -1
0 -1 0

a3, 1 0 0 (0,0,0)
0 0 -1
1 0 0

5001 o 1 0 (x, »,0)
0 0 -l

2.5. Equivalent composites

It can be seen from Table 4 that composites with
symmetry described by certain subgroups can be
created by more than one crystallographically
equivalent displacement.* This occurs whenever a
subgroup adopts more than one crystallographically
equivalent orientation in the point group of the
original composite. The subgroup m’'m2’, for
instance, adopts four different orientations in
4/mm'm’ differing over an angle of 45° about the
fourfold axis; two of these orientations are not crys-
tallographically equivalent. Only the first orientation
is considered here, since the second case can be
treated in exactly the same way. The two crystal-
lographically equivalent subgroups m'm2’ (sub-
groups 11 and 12 in Table 4) are related by a symmetry
operation, say 44, of the original composite. The

* It is possible that composites with identical symmetry can be
created by crystallographically non-equivalent displacements.
These cases, however, must be treated separately; this is a situation
where the need to distinguish between crystallographically non-
equivalent subgroups arises.
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Table 4. Point-symmetry variation of a composite with
symmetry 4/ mm'm’

Displacement expressed relative to Point group
original coordinate system No.* Symbol

0,0,0) 1 4/ mm'm’
0,0,2) 5 422
©,y,0) 11 m'm2'
(x,0,0) 12 m'm2’
(X x,0) 13 m'm2’
(% x,0) 14 m'm2’
0,52 29 2
(%0,2) 30 2’
(% x,2) 31 2
(x x,2) 32 2
(% »0) 33 m
(x5 2) 35 1

*See Table 1.

same operation relates the displacements t, = (x, 0, 0)
and t,=(0, y,0) yielding the corresponding com-
posites.

It can be stated that, in general, whenever an
original composite contains point symmetry higher
than 1 there exists a set of dichromatic composites,
obtained from the original composite by displace-
ments of the black component, which are related by
the symmetry of the composite with t=0. The com-
posites of such sets will be called ‘equivalent com-
posites’.

A crystallographic point group G can be decom-
posed into left cosets with respect to a subgroup H,

G=H+g|H+g2H+...+g"_|H,

where n is the index of Hin Gand g; (Isi<n-1)
is an operator of G which does not belong to H nor
to any of the previous cosets. Each coset will corres-
pond to a composite with t# 0. The equivalent com-
posites, having the same or crystallographically
equivalent point symmetry, are related by the sym-
metry operations of the set{l, g, g5,..., g._.}. Thus,
for the example mentioned above we have G=
4/mm’'m’ and H = m'm2’ and the decomposition is

{4/mm'm'}={m'm2'} +455,{m'm2'} + 245, {m'm2"}
+43,{m'm2'}
={4H{m'm2'}.

Consequently, the equivalent composites with sym-
metry m'm2' are obtained by the displacements
(x,0,0), (0,x,0), (x,0,0), (0, 0) which are also
related by the symmetry operations of the group 4=
{1, 401, 2001, 4301 }-

It must be noticed that the set of symmetry oper-

ations relating equivalent composites is generally not
unique; in the above case we have, for instance,

G= H +4(l)0|H+2(l)0|H +430|H
= H+SI||0H +S%|0H +2(l)0|H.
A crystallographic point group may be decomposed

THE VARIATION OF INTERFACIAL SYMMETRY

into non-intersecting (except for the identity operator)
subgroups, called direct factors, whose product* is
the original group (Kurosh, 1955). Let the initial
group G be decomposed into two factors, one of the
subgroups is chosen to be the symmetry group H of
the equivalent composites with t# 0 and the other is
designated G,. This decomposition is not unique,
however, so that, for a given G and H, G, may be
chosen in a number of ways G, Each such G,
represents a set of symmetry operations, all indepen-
dent of H, which relate equivalent composites. For
the above considered case we have: {4/mm'm’} =
{4{m'm2'} = {m'm2} {m'm2'} = 4{m'm2'} =...=
{2/m'H{m'm2}={22"2"H{m’m2'}, but any of these
decompositions gives the same set of displacements
creating the equivalent composites with symmetry
m'm2'.

2.6. Conservation of point symmetry elements

In this section we seek to determine the conditions
for the conservation of symmetry elements. These
conditions can be established if we recall that every
symmetry element is associated with one or more
symmetry operations.¥ The only symmetry element
of order 1 is the identity (onefold ordinary axis) and,
according to (2), there is no displacement which could
destroy the symmetrical relationship of a point to
itself.

Rule 1: The ordinary identity element is conserved
by any relative displacement of the black and white
components.

Symmetry elements of order greater than 1 are
associated with either ordinary operations only or
equal numbers of ordinary and colour-reversing oper-
ations. These symmetry elements are conserved by
the displacements which leave all the correlative oper-
ations invariant. Consequently, a symmetry element
of order n (n>1) is conserved by displacements
determined from the solution of the system of
equations

SA-1)"t/2}=t¢/2,

where S; (i=1,2,..., n) are the matrices representing
the symmetry operations associated with the sym-
metry and « =1 for colour-reversing or k=2 for
ordinary symmetry operations.

The symmetry elements of order 2 are 1,2,m,1',1",2'
and m’. Each of these elements is associated, except
the identity, with only one ordinary or colour-
reversing operation and, taking into account rule 1,
the displacements conserving it are determined by (1)
or (2) correspondingly. We have the following rules.

* A product is understood, in this context, as the sum of all
products of the elements of the subgroups one by one.

T The number of symmetry operations coupled with a symmetry
element is called the ‘order of the element’.
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Rule 2: No translation conserves the anti-identity
operation.

Rule 3: The ordinary inversion centre is destroyed
by any displacement whereas the anti-inversion centre
is always conserved.

Rule 4: Colour-reversing axes 2’ or planes m' are
conserved by displacements which are perpendicular
to the rotation axes or symmetry planes.

Rule 5: An ordinary twofold axis or mirror plane
is conserved only by displacements parallel to this
axis or plane of symmetry.

The displacements conserving symmetry elements
of order greater than 2 (i.e. 3,4,6,3,4,6,4',6',3',4,6'; the
threefold colour-reversing axis is not included since
3'=31") are determined by combining (1) and (2) as
indicated above. For such symmetry elements we have
the following rules; the first of these rules may be
regarded as a generalization of rule 5.

Rule 6: An ordinary n-fold rotation axis (n=
2,3,4,6) or mirror plane is conserved only by dis-
placements parallel to this axis or plane of symmetry.

Rule 7: Colour-reversing 3’, 4', 6' rotoinversion
axes are conserved only by displacements along the
axis.

Rule 8: The ordinary rotoinversion axes 3, 4, 6 and
the colour-reversing rotation axes 4, 6' are destroyed
by any displacement.

3. Part II: Variation of the spatial symmetry*

In this part we investigate how the relative displace-
ment changes the symmetry of periodic composites.
The components of such a composite are necessarily
periodic, and in this part they are considered to have
three-dimensional translational symmetry. However,
this attitude by no means restricts the proposed treat-
ment which can identically be applied for composites
formed by two components of one- or two-
dimensional periodicity.

The presence of translational symmetry in a dichro-
matic composite has two important consequences.
First of all, the spatial group of the composite before
or after displacement may be either symmorphic or
nonsymmorphic. Thus, some of the symmetry ele-
ments of the composite may be screw axes or glide-
reflection planes (see §3.3). Secondly, unlike the
point-symmetry variation, there exist displacements
which conserve the original composite.

3.1. Displacements conserving a periodic composite

The displacements which leave the original peri-
odic composite unchanged may be classified into two
categories, namely:

* From hereon we use the terms ‘spatial symmetry’ and ‘spatial
group’ to signify that the translational symmetry present may be
one, two or three dimensional, and reserve the terms ‘space sym-
metry’ and ‘space group’ for three-dimensional cases.
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(i) displacements due to the periodicity of the com-
ponents; and

(ii) displacements due to the periodicity of the
composite.

As mentioned above, the components of a periodic
composite always have translational symmetry. The
translation group of the Bravais lattice of each com-
ponent contains, by definition, all the displacement
vectors for which the component is invariant in space.
Thus, if the relative displacement of the black (white)
component is equal to a translation vector of the black
(white) lattice, then the composite is recreated at its
original position. Displacements of this category are
termed ‘composite repeat displacements’ and they
join points of the same colour in the dichromatic
composite.

The second category of displacements is related to
periodic composites with a misorientation relation-
ship which yields a coincidence site lattice (CSL) (see,
for example, Grimmer, Bollmann & Warrington,
1974). The latter is a sublattice common to both
components generated by the set of neutral sites in
the dichromatic composite. In such cases there are
antitranslation vectors, ie. vectors joining white to
black sites, which reconstruct the composite as a
whole. If the black component is displaced by any
antitranslation vector, the original composite is re-
created but, in general, has its neutral origin located
at a new position. The shift of the CSL is equal to a
translation vector of the white component.

As an illustration of displacements of the second
category we consider a dichromatic patternt formed
by rotating a black face-centred cubic lattice by an
angle 8 =36.9° along [001] with respect to an identical
white lattice (Fig. 3). This misorientation corresponds

T A dichromatic pattern is a special composite and is defined by
Pond & Bollmann (1979) as the composite consisting of two inter-
penetrating Bravais lattices.
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Fig. 3. Projection along [001] of the CSL dichromatic pattern
formed by face-centred cubic lattices with misorientation
[001]/36.9°. The size of the symbols representsthe... ABABA. ..
stacking along [OOI}; large and small circles represent sites at
levels 0 (or 1) and 5 along [001], respectively. Open and filled
circles indicate the white and black lattice sites, respectively.
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to a CSL with 2 =5. Now, if we displace the black
lattice by, say, b, =15a[310], (where the subscript
refers to the coordinate system of the white lattice),
the original composite is reconstructed but its origin
is shifted by the translation vector 3 [110] of the white
lattice.

3.2. Displacement vector set

The effect of relative displacements on the spatial
symmetry of a dichromatic composite can be rep-
resented in a comprehensive way by means of the
vector space (Buerger, 1950). For the purpose of our
investigation the vector space is considered as the
space containing the displacement vector set of the
associated dichromatic composite.

The vector set is formed by drawing vectors
between all points in the periodic dichromatic com-
posite. These vectors are then assembled at common
origin and the unit cell of the periodic vector set is
established. The unit translations of the vector set
correspond to the shortest independent displacements
which recreate the original composite (it is possible
that such displacements reconstruct the original com-
posite in a new position, but this is not important as
far as its symmetry is concerned). In other words, the
translational symmetry of the vector set represents
the periodicity of the spatial symmetry variation. Con-
sequently, it is adequate to investigate changes of the
spatial symmetry only for displacements which fall
within the Wigner-Seitz cell of the associated vector
set. Such displacements are referred to as ‘reduced
displacements’ (Pond & Bollmann, 1979) and denoted
t.

It is evident, from the construction of the vector
set, that the fundamental and vector sets have an
equal number of translational axes. In the case of
dichromatic composites with no translational sym-
metry the vector set is aperiodic and, hence, no restric-
tions are imposed on the displacements. For com-
posites with one- or two-dimensional periodicity the
unit cell of the vector set is linear or planar respec-
tively and the reduced displacements must be projec-
ted within the corresponding Wigner—Seitz cell.
Finally, three-dimensional periodicity in a composite
implies a three-dimensional Wigner—Seitz cell and,
thus, the reduced displacements must end within or
at the boundaries of this cell.

3.3. General and special displacements

The spatial group of a periodic composite may be
symmorphic or nonsymmorphic. The symmetry ele-
ments of the former are equivalent to point symmetry
elements and their conservation rules have already
been studied in part I. It remains, therefore, to deal
with translation-coupled symmetry elements which
may be present in the original composite or be created
by the appropriate displacement of the black com-
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ponent. Consider, for example, the one-dimensional
periodic composite in Fig. 4(a). The Wigner-Seitz
cell of the associated vector set is along the translation
axis and extends from —a/2 to a/2. Any infinitely
small displacement of the black component away
from the reference position destroys the mirror plane
m,, of the original composite. Thus, for —a/2 <t'<a/2
and t’' # 0 the mirror m,, is not present in the obtained
dichromatic composite. The displacements t' = +a/2,
however, bring the two components in a glide-reflec-
tion relationship (Fig. 4b).

The variation of spatial symmetry of a periodic
composite is, therefore, a consequence of two reasons.
Firstly, the displacement may destroy some symmetry
elements of the original composite. Secondly, the
same displacement may transform some (if not all)
translation-free rotation axes or mirror planes of the
original composite into screw axes or glide planes (or
vice versa). Displacements with this property, as well
as displacements which conserve the composite as a
whole, will be called ‘special displacements’, whereas
the remaining are referred to as ‘general displace-
ments’.

Special displacements correspond to dichromatic
composites in which the relative translational position
of their components is defined by a vector of specific
magnitude; the end-points of such vectors are special
positions in the Wigner—Seitz cell of the associated
vector set. Any infinitely small deviation away from
the special position changes the symmetry of the
composite. General displacements, on the other hand,
are associated with dichromatic composites, the sym-
metry of which remains unchanged over wide limits
of displacement.
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Fig. 4. (a) A composite with one-dimensional periodicity; the unit
translation is indicated by the vector a. Open and filled circles
represent points of the white and black (one-dimensional) com-
ponents respectively. The composite exhibits symmetry gmm’2'.
(b) The composite obtained from (a) by displacing the black
component by t=a/2; its symmetry is gma‘2’. (c¢) The disposal
of symmetry elements for the composite shown in (b).
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Table 5. Possibilities of symmetry-element conserva-
tion in spatial symmetry variation

The symbols have the following meaning: tf = translation-free sym-
metry element, tb = translation-bearing symmetry element.

Type of symmetry element

Kind of Before After
No. symmetry element displacement  displacement
1 Ordinary ff ff
2 th th
3 Colour-reversing tf of
4 tf th
S th th
6 th tf

3.4. Conservation of translation-coupled symmetry ele-
ments

Both general and special displacements change the
spatial symmetry of the dichromatic composite by
destroying some symmetry elements originally pres-
ent while conserving others. By conservation of an
ordinary or colour-reversing symmetry element we
understand either that the element is invariant by the
displacement or that the relative shift of the com-
ponents transforms the symmorphic element into a
nonsymmorphic one or vice versa. However, since a
displacement changes only the relative translational
position of the two components, a special displace-
ment transforms only colour-reversing axes and/or
mirror planes to their respective translation-coupled
counterparts or vice versa.

The various cases of symmetry-operation conserva-
tion are given in Table 5. Cases 1 and 3 have already
been investigated in part I. Moreover, it can easily
be seen that in cases 2 and 5 the conditions for
conservation of the associated symmetry operations
are identical to those for symmorphic operations. We
have, therefore, to consider only cases 4 and 6 here.
For the former, let S, =(S.|0) be the symmetry oper-
ation of the original composite and let (S.|7) be the
Seitz symbol (Seitz, 1936) of the corresponding non-
symmorphic operation created by the displacement
t'. Then, in the original composite there is at least a
white and a black point, r,, and r,, respectively, for
which S.r,, = (S.|0)r, =r,. The positions of the above
points, after displacement t', are r,,~t'/2 and r, +t'/2
and their symmetry relationship is (S.|7)(r, —t/2)=
S.(r,—t/2)+7=r,+t'/2. A symmorphic colour-
reversing symmetry operation S, is, therefore, trans-
formed to its nonsymmorphic equivalent (S.|t) only
by displacements satisfying the relation

S.(~t/2)+7=t/2. 3)

Similarly, a nonsymmorphic colour-reversing oper-
ation (S,|7) is transformed to its symmorphic residue
by displacements given by

S(—=t'/2)—7=1t/2. “)
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We are now ready to establish the conditions for
conservation of nonsymmorphic symmetry elements.
Ordinary or colour-reversing translation-coupled ele-
ments are invariant by exactly the same displacements
which conserve the corresponding symmorphic ele-
ments. A colour-reversing glide-reflection plane, for
example, is conserved by displacements perpen-
dicular to it irrespectively of its translation com-
ponent (cf rule 4). Thus, it can be said that rules 1-8
given in part I are identically applied for the invari-
ance of symmorphic and nonsymmorphic symmetry
elements. This is demonstrated by considering the
following example. The dichromatic composite in Fig.
4(b) has spatial symmetry x£ma'2’, where 4 stands
for the one-dimensional lattice and the disposal of
the symmetry elements is shown in Fig. 4(c). A dis-
placement t' perpendicular to the a’ conserves this
colour-reversing glide-reflection plane as well as the
ordinary plane m. Conversely, if the displacement is
parallel to a’, and hence perpendicular to m, both
symmetry planes are destroyed.

We examine next the conditions under which a
symmorphic symmetry element is transformed to a
nonsymmorphic one or vice versa. Consider, for
example, a twofold colour-reversing axis along the z
axis of a right-handed orthogonal coordinate system
of the white component. The considered 2’ axis can
be changed to only a 2] screw axis parallel to the z
direction of the coordinate system. Thus, we have
21=(2'|00¢/2), where c is the magnitude of the perio-
dicity vector along the z axis. Consequently, the dis-
placements transforming 2’ to 2] are given by

-1 0 0\ /~t/2 0 t./2
0 =1 off-n/2)+[ o }={r2)
0 o 1/\-zt/2 ¢/2 t/2

ie. by t'=(x,y ¢/2). This can be written as t'=
(x, y,0)4(0, 0, ¢c/2), where the first term corresponds
to a displacement for which the initial 2’ axis is
invariant and the second term is the displacement
bringing the two components into 2; relationship.

Rule 9: Colour-reversing screw diads or glide-
reflection planes are created from 2’ axes or m’ planes
(or vice versa) by displacements t'=t; +t3, where t|
is the displacement leaving the 2’ or m’ invariant and
t} is a displacement component parallel to these sym-
metry elements and equal to the translation part of
the screw diad or glide plane.

For n-fold screw axes (n>2) we note that the
relative displacement simply shifts one component
with respect to the other.

Rule 10: Only four and sixfold colour-reversing
rotation axes can be changed to screw axes or vice
versa. The screw axes have neither right nor left sense,
i.e. they can be only 45 and 63, and they correspond
to a relative displacement parallel to the original axis
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with magnitude equal to half the period along the
colour-reversing 4’ and 6’ axes.

As was pointed out above, any displacement
changes the spatial and/or point symmetry of the
original dichromatic composite. The point-symmetry
case was investigated in part I, and remains, therefore,
to give the procedure for the determination of the
spatial symmetry variation. The method is based on:
(a) the original composite exhibits the highest poss-
ible symmetry for the given components and mis-
orientation relationship, and (b) a displacement can
never modify the periodicity of the dichromatic com-
posite (Pond & Vlachavas, 1983). This means that the
spatial symmetry group of the composite with t0
must be a subgroup of that corresponding to t =0 but
the two groups have the same translational subgroups.

3.5. Deterriination of the spatial symmetry for general
displacements

According to the discussion in the foregoing sec-
tion, general displacements can never transform a
symmorphic symmetry element into a nonsymmor-
phic one or vice versa. The spatial symmetry of a
composite obtained by a general displacement is,
thus, described by a group in which: (i) all symmetry
operations are also symmetry operations of the
original composite, and (ii) the subgroup of transla-
tions is the same as that of the original composite.
General displacements correspond, therefore, to
spatial subgroups in which the descent in symmetry
has only affected the symmorphic or nonsymmorphic
rotations and reflections but not the accompanying
translations in the unit cell. In other words, the spatial
symmetry for general displacements is a zellengleiche
subgroup (Hermann, 1929) of the original symmetry
group. Thus, the procedure to determine the spatial
symmetry for general displacements is as follows.

Let G be the spatial symmetry of the original com-
posite and g be its point group. Firstly, we investigate
the point-symmetry variation by the method proposed
in part 1. This allows us to establish the displacements
conserving subgroups of the point group g. Secondly,
we obtain the list of zellengleichen subgroups of G.
Hermann (1929) has shown that there is only one
zellengleiche subgroup of G for each subgroup of g.
Thus, if the displacement conserving a particular
subgroup of g is obtained, then this displacement
conserves also the isomorphic zellengleiche subgroup.
In most cases the answer can be written immediately
by inspection of the symbols. However, attention
should be given for the cases where the point sub-
group adopts crystallographically non-equivalent
orientations in the point group of the original com-
posite. In such cases different zellengleichen sub-
groups may correspond to the non-equivalent point
groups. The ambiguity can be resolved by considering
the point symmetry operations that are conserved by
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the particular general displacement. Thus, we can
establish the point subgroups, and consequently the
zellengleichen subgroups, corresponding to these dis-
placements.

3.6. Determination of the spatial symmetry for special
displacements

Special displacements give dichromatic composites
with spatial symmetry described by a group which:
(i) has the same subgroup of translations as the
original composite; (ii) is isomorphous with a sub-
group of the point group of the original composite;
and (iii) may contain translation-coupled colour-
reversing symmetry elements corresponding to trans-
lation-free  colour-reversing elements present
originally in the composite or wvice versa. Con-
sequently, a composite corresponding to a special
displacement displays nonsymmorphic/symmorphic
symmetry isomorphic to the symmorphic/nonsym-
morphic symmetry of a zellengleiche subgroup of the
original composite. This can be expressed by the
following considerations.

Let G be the spatial group of the original com-
posite, T the translation group of the Bravais lattice
of G and G, a zellengleiche subgroup of G. Then, G,
can be expressed as the sum of the left cosets of its
translation group T:

G, =(n|v)T+(r)v) T +...+(nls,)T
F(rhatlThe) T +(FhaaTha) T+ .+ (rhulT2n) T,

where 7; is the supplementary displacement associ-
ated with the translation-coupled point symmetry
operation r; and the rotational parts ry, 75, . .., Py, F'hs1s
Ths2 -+ -, I3, form the point group g, isomorphic to
G.. A special displacement t' will change 7,,; to
Ths+i Tt so that G, changes to

Go=(nlt)T+(rlt)T+...+(raf7n) T
+(rhalTha O T +(r)olTh a2 +)T
+.o (Pl +)T.

To establish the spatial groups for special displace-
ments we apply, therefore, the following algorithm.
For each zellengleiche subgroup G, of the original
group we determine the isomorphic spatial groups
having the same Bravais lattice as G, and the same
ordinary symmetry operations. For each of the so
obtained spatial groups G, we check if there is a
displacement t' to transform G, to G,. This can be
achieved by adopting the description of a spatial
group by means of its ‘general positions’ (Interna-
tional Tables for X-ray Crystallography, 1965). Com-
parison between the sets of general positions of G,
and G, will yield the required displacement t'.

We consider, as an example, the two-dimensional
group p2'm’m; the general positions of this group
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are: x,y; x, y; X', y'; X', ', where the primes indicate
that in the particular general position colour-reversing
occurs. The two-dimensional space groups in the class
2'm'm are: p2’m'm, p2'm’g, p2'g’'m and p2'g'g (Belov
& Tarhkova, 1956). We note, however, that both
p2'm'g and p2'g’'g possess an ordinary g plane which
is not present in the original group p2'm’'m. Thus,
only the group p2'g’m may correspond to a special
displacement. Its general positions are expressed rela-
tive to the coordinate system of the original group as
xy; x,y; ¥, 3+y'; ¥, 3—y'. The first and second
positions in both sets correspond to the common
ordinary elements of p2'm'm and p2'g’'m. Con-
sequently, we can transform p2'm'm to p2’'g’'m by the
displacement t' = (0, §) as can be seen by considering
the geometric representations of the two groups (Fig.
5).

3.7. Example of spatial symmetry variation

To conclude this paper the procedure for studying
the symmetry variation of a periodic composite is
demonstrated by the following example. The original
composite considered is formed by two face-centred
cubic lattices of identical lattice parameter a which
are related by the misorientation relationship
[0011/36.9° (Fig. 3). As was mentioned in § 3.1, this
composite corresponds to the 2 =5 CSL misorienta-
tion, its space group is I4/mm’'m’, and its vector set
has a body-centred tetragonal unit cell with lattice
parameters, expressed relative to the white lattice,
b, =15a[310],, b, =5a[130],, and b; = b, Xb, =[001],,.
The coordinate system used for expressing the dis-
placements t' is as follows: the origin is taken to be

by
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Fig. 5. Geometrical representations of (a) p2'm'm and (b) p2'g'm
two-dimensional space groups.
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Table 6. Zellengleichen subgroups of the two-
coloured space group 14/ mm'm’

The serial numbers in this table correspond to those in

Table 1.
Zellengleiche Zellengleiche
No. subgroup No. subgroup

1 4/ mm'm’ 18 C2/m’
2 182'm’ 19 C2/m
3 132'm' 20 Im'm2
4 Iam'm’ 21 Fm'm'2
5 1422 22 12272
6 14/m 23 F2272
7 13 24 Pl

8 14 25 Ccm'
9 Im'm'm 26 Cm'
10 Fm'm'm 27 Cm'
11 Im'm2' 28 Cm'’
12 Im'm2’ 29 c2
13 Fm'm2' 30 c2
14 Fm'm2’ 31 c2
15 C2/m' 32 Cc2
16 C2'/m' 33 Cm
17 C2/m’ 34 C2

35 P1

a coincidence site, and the unit vectors along the x,
y and z axes are b;, b, and bs, respectively.

(a) General displacements: the point-symmetry
variation of 4/mm’m’ has already been studied in
§ 2.4 and, hence, Table 4 may be regarded as giving
the point symmetry of the composites obtained by
general displacements. In order to establish the space
symmetry of these composites we consider the list of
the zellengleichen subgroups of 14/ mm’m’ (Table 6)
and we combine this list with Table 4 (see §3.5).
Consider, for example, the displacement t'=(0, 0, z)
which yields a composite with point symmetry 42'2'.
Referring to Table 6 we see that the zellengleiche
subgroup of I4/mm’'m’ belonging to the class 422’
is 142'2" and, consequently, the space group of the
composite obtained by t'=(0, 0, z) is 142"2".

This procedure may lead to ambiguity when a point
subgroup adopts crystallographically non-equivalent
orientations in the point group of the original com-
posite. However, the ambiguity can easily be resolved
as explained in §3.5. Such a case occurs for the
displacements t'=(x,0,0) and t'=(x, x,0); both of
them correspond to composites with point symmetry
m’m2’. The subgroup m'm2’ adopts four different
orientations in 4/mm'm’ located over an angle 45°
about the fourfold axis; two of these orientations are
not crystallographically equivalent. To establish,
therefore, the space groups of the composites with
t'=(x,0,0) and t' = (x, x, 0) we note that the first dis-
placement conserves the subgroup m'm2'={1,2},,,
So01, S1o0y and, according to Table 6, the respective
space group is Im'm2’'. On the other hand, if the
displacement t' = (x, x, 0) is considered, then the con-
served symmetry operations form the subgroup
m'm2' ={1, 21,,, Soo1» 5110} and, hence, the space group
for ¢ =(x, x,0) is Fm'm2'.



212

In a similar way we determine the space symmetry
for the remaining displacements. However, we must
remember at this point that the symmetry of a com-
posite varies periodically with the displacement.
Thus, t’ and t' +t,,, where t,, is a translational vector
of the vector set associated with the original com-
posite, will yield the same composites. The shortest
t,s is (3,3, 3) and this vector, or one of its symmetry
equivalents, must be added to each displacement
determined above in order to obtain the full set of
general displacements within the Wigner—Seitz cell.

(b) Special displacements: first of all, we establish
by the algorithm mentioned in § 3.6 the space groups
which may correspond to special displacements
(Table 7). We must notice, however, that the space
groups are indicated in Table 7 by their standard
symbols, and that different settings may be possible.
Thus, for the group Imm’a’ the glide-reflection plane
may be perpendicular to either the x axis or the y
axis of the coordinate system of the original com-
posite; thus, we have either Ib'm'm or Im'a’'m (see
International Tables for X-ray Crystallography, 1965).
To determine the displacement transforming Im'm’'m
to, say, Im'a’m we consider the general positions of
both groups:

Im'm’'m: (0,0,0;3,3,3)+
(11000)  (2601/000)  (1]000)  (500:/000)

X, )z X )z X0z X0z
(2100/000)  (2016/000)  (5700/000)  (5610/000)

x,y, 7 x,5z  x\y,Z x,yz
and
Im’a’m: (0,0,0;3,3, %)+
(11000)  (2601/000)  (1]000)  (500:/000)
b A A4 X9,z X9z X,z
2 :;)0500) (2(')‘10%00) (51001200) (so10 |%00)

=7 !

3+x, 7,7 3=x,y, 7 S-x,y, 7 5+x, ¥, 7.
The general positions of the first line in the two groups
correspond to their common symmetry operations.
Im'm'm is, therefore, transformed to Im'a’'m by t' =
(4,0,0) or t' =(0,1,3). On the other hand, the general
positions of Ib'm’'m are

Ib'm'm: (0,0,0;3,3%,3)+

(1/000) (2601/000) (1]000) (5001/000)
X,y z X9,z Xy z )z
(2 :oo|0%0) (2:)'10[0%0) (Siooloéo) (anolo%o)

X,i3=y, 2 ® iy, ® iy, X iyl
and, consequently, this group corresponds to t' =
0,1/2,0) or t'=(1/2,0,1/2).

As can be seen from Table 7 a composite with
symmetry, say, I4/mc'm’ is created by t' = (0,0, 3) or
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Table 7. Determination of the space groups correspond-
ing to special displacements for the group 14/ mm'm’

The coordinate system for specifying t’ is as follows: the origin is
taken to be the centre of the Wigner-Seitz cell of the associated
vector set, x is parallel to b, y to b, and z to b, Xb,.

Isomorphic
space group
Zellengleiche for special Fractional coordinates
subgroup displacement of displacements t'
G, G, transforming G, to G,
14/ mm'm’ 14/ mc'm’ ©,0,2),:3,0
132'm' 132d (::0,3),(0,7.3),
0,3, =2 ,0,-3)
14m'm’ I14c'm’ (0,0, %), (%, » 0)
Im'm'm Ib'a’'m (0,0,3), (2,2,0),
Im'm'm Imm’a’ (20,0),(0,3,0)
(0.3,2),,0,3)
Im'm2’ Ima'? 3.0,0),0,1,0),
©0.53.G,0.3)
C2'/m' C2/c (0,0, ?), (?. 3 0)
Im'm'2 Ib'a’2 0,0,3), (3,2, 0)
Im'm’2 Im'a’2 (:0,0),(0,3,0),
©.3,2..0,3)
Fm'm"2 Fd'd2 (0,2, (0,2,2),
©,3 ~2),G,0, -3)
Cm’ ce (0,0,3), (2,2,0)

Table 8. Variation of the dichromatic composite sym-
metry 14/ mm'm’ with relative displacement t’

The coordinate system used for expressing t' is the same as that
in Table 7.

Fractional coordinates

of equivalent displacements Space
0,0,0:4, 1.1+ Rank symmetry
0,0,0) 2 14/ mm'm’
0,0,3) 14/ me'm’
(:0,, 0,3, 4 1aa
,0,0),(0,,0) 4 Imm'a’
0,0,2),(0,0, 2) 4 1422
(% 0,0), (0, x,0),(x0,0), (0, x,0) 8 Im'm2’
(x, x,0), (%, x,0), (x, X, 0), (X, x,0) 8 Fm'm2'
(x,0,2),(0, x, 2), (% 0, ), (0, % 2), 16 c2
(%0,2),(0,x,2),(%0, 2),(0, X, 2)
(x, %, 2), (% %, 2),(x, X 2), (% X, 2), 16 c?
(X% X 2),(% X 2),(x X, 2),(%, % Z)
(% 5,0), (3, x, 0), (x, % 0), (5, X, 0), 16 Cm
(% 7 0), (5, % 0), (%, , 0), (5, x,0)
(% ¥ 2), (%, ¥, 2), (X%, 3, 2), (% 3, 2), 32 P1

X% 2), (% X, 2), (3 %, 2), (P, % 2),
(X, 5, 2), (X, ¥, 2), (X, 3, 2),(% }, 2),

% 2, (%%, 2), (0. X, 2), (5, %, 2)

t'=(3,%0). These two displacements are, however,
related by a translation operator of the vector set
associated with the original composite, i.e. (0,0, 3)=
1,3, 0)+@3, 3, 3). This is an immediate consequence of
the fact that the translational symmetry of the vector
set represents, as explained in § 3.2, the periodicity
of the spacial symmetry variation.

The space-symmetry variation of the composite
I4/mm’m’ is summarized in Table 8. In the heading
of the first column of this table the symbol (0, 0, 0;
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3,3, %)+ appears. This means that the full set of dis-
placements corresponding to a particular composite
symmetry is obtained by adding the vector (3,3,3) in
turn to all displacements of the set given in the first
column. The full set of displacements contains all the
vectors whose end-points are equivalent positions in
the space group of the vector set associated with the
original composite. Such a set of displacements will
be referred to as ‘set of equivalent displacements’ and
the number of equivalent displacements in the set is
called its rank.

In part I we pointed out there are displacements
which create symmetry-related composites. This is
true for periodic composites as well. In this case,
however, the periodicity of the spatial symmetry vari-
ation must also be taken into account. If the transla-
tional symmetry of the vector set of a periodic com-
posite is described by a primitive lattice, then the set
of equivalent displacements contains all the shift vec-
tors which yield symmetry-related composites. On the
other hand, for vector sets with non-primitive lattices
the set of equivalent displacements contains in addi-
tion displacements which are associated with iden-
tical composites. This is the case for the above-
considered example. The equivalent displacements
(0’ 0’ Z)a (09 Oa Z_): (%a %, % + Z)a (%a %: %— Z), for iHStance:
yield composites with symmetry 142'2’. But all these
composites are not symmetry equivalent. The first and
third, as well as the second and fourth, displacements
are interrelated by the translation vector (3, 3, 3) of the
vector set and, hence, they correspond to identical
composites. Thus, the number of symmetry-related
composites depends on whether the lattice of the
vector set (or, equivalently, of the periodic composite;
see Buerger, 1959) is primitive or not. The number of
symmetry-related composites is equal to the rank of
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the set of equivalent displacements divided by the
number of lattice points in the unit cell of the periodic
composite. This can be expressed comprehensively
through a detailed study of the symmetry-related
composites obtained by general and special displace-
ments. Such a formulation in group theoretical terms
will, however, be discussed in a following paper.
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Abstract

A group-theoretical method is presented that enables
the derivation of the symmetry of any composite
created by the superposition of two identical point
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groups. The invariant points of the two components
are considered in coincidence and the composite sym-
metry is expressed as the intersection of two sets of
symmetry operations. The first set contains the sym-
metry operations common in the components when
their mutual disposition is taken into account,
whereas in the second set belong the additional
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